SLAM Performance on Embedded Robots
Undergraduate Student Research: Individual Project

Nima Shoghi Ghalehshahi
Georgia Tech
nimash@gatech.edu

Ramyad Hadidi
Georgia Tech
rhadidi@gatech.edu

Hyesoon Kim
Georgia Tech
hyesoon@gatech.edu

ABSTRACT
We explore whether it is possible to run the popular ORB-SLAM2 algorithm (simultaneous localization and mapping) in real-time on the Raspberry Pi 3B+ for use in embedded robots. We use a modified version of ORB-SLAM2 on the Pi and a laptop to measure the performance and accuracy of the algorithm on the EuRoC MAV dataset. We see similar accuracy between the two machines, but the Pi is about 10 times slower. Finally, we explore optimizations that can be applied to speed up execution on the Pi. We conclude that with our optimizations, we can speed up ORB-SLAM2 by about 5 times with minor impact on accuracy, allowing us to run ORB-SLAM2 in real-time.

INTRODUCTION
Simultaneous localization and mapping (SLAM) is the problem of, given an unknown world, mapping the world and localizing within that map. It is used by self-driving cars, uncrewed aerial vehicles (UAVs), autonomous underwater vehicles (AUVs), and vacuum cleaning robots, to name a few. In most of these use cases, the SLAM algorithm needs to run on embedded devices, such as the Pi. Our goal is to find the optimal conditions for running ORB-SLAM2 [5], a popular algorithm used for real-time SLAM with mono, stereo, and RGB-D camera inputs, on the Pi.

MEASUREMENT
In this paper, we use "performance" to refer to the time it takes to run the algorithm and "accuracy" to refer to the correctness of the output.

We use the following accuracy metrics:
1. Absolute Trajectory Error (ATE): ATE measures the holistic accuracy of the algorithm by comparing ground truth trajectories to the predicted trajectories [6].

And the following performance metric, the total tracking time $\sum t$ (seconds): $\sum t$ is the total number of seconds it takes to process all images, excluding any file loading or parsing time.

TESTING ENVIRONMENTS
The software is built, packaged, distributed, and executed using Docker. We use the following two test machines:
1. Raspberry Pi 3 B+ (4x Cortex-A53; 1 GB RAM; Raspbian)
2. OVERPOWERED Laptop 15+ (Intel i7-8750H; 32 GB RAM; Windows 10 Education)

DATA AND ANALYSIS
The data collected follows below trends:
- Stereo camera inputs provide much better accuracy while taking 2× longer to process (see figures 1 and 2).
- The laptop is 8.8× faster with stereo camera inputs and 10.3× faster with mono camera inputs.
- Both machines show similar RPEs, indicating that there’s not much difference in the drift.
- The Pi had a higher ATE on average. However, this can be attributed to a few outliers.

2Docker Desktop for Windows uses the Hyper-V hypervisor to set up a Linux virtual machine to run Docker. This process incurs some performance overhead.
These trends indicate the Pi’s hardware limitations degrade our performance but not our accuracy. The next section includes optimizations that increase our performance.

OPTIMIZATIONS

The following optimizations are applied to decrease the total tracking time Σt:

- We tune ORB-SLAM2’s ORB Extractor configuration:
 - Decreasing the number of features ($\text{ORBextractor.nFeatures}$) increases our performance with minor impacts on the accuracy. We witness a $1.75 \times$ increase in performance with negligible impact on accuracy.
 - Decreasing the depth of the orb extraction tree ($\text{ORBextractor.nLevels}$) has a $1.25 \times$ increase in performance. We increase the ORB scale factor ($\text{ORBextractor.scaleFactor}$) to make up for the lowered depth.

- If the input video contains high definition frames, we recommend downscaling to lower dimensions. Our research showed that resolutions around 640x480 provide a good balance of performance and accuracy.\(^3\)

- Using lower FPS for the input image sequence is recommended for seamless live SLAM. We found 10 and 20 FPS to be sufficient for seamless live SLAM on stereo and mono camera inputs, respectively.

The following optimizations do not have an impact on Σt, but have an impact on the total time it takes to run the algorithm:

- ORB-SLAM2 employs a bag of words place recognition system built on the DBoW2 library for loop detection and relocalization [4, 2]. The library’s initial vocabulary loading takes a considerable amount of time on the Pi, as it parses the text file line-by-line to create the vocabulary tree. We solve this by creating the vocabulary tree once before.

3The EuRoC dataset that was used in our research provides stereo input images of size 752x480.

4This optimization is not necessary when performing real-time online SLAM. In the case of real-time online SLAM, we can use OpenCV’s cv::VideoCapture to read from the Linux camera device (e.g. /dev/video0) directly.

5Our testing environment controlled these parameters to minimize the overhead incurred by Docker.

REFERENCES

