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Abstract—Processing-in-memory (PIM) is regaining attention
as a promising technology for improving energy efficiency of
computing systems. As such, many recent studies on 3D stacking-
based PIM have investigated techniques for effectively offloading
computation from the host to the PIM. However, the thermal
impacts of such offloading have not been fully explored. This
paper provides an understanding of thermal constraints of PIM
in 3D-stacked designs and techniques to effectively utilize PIM.
In our experiments with a real Hybrid Memory Cube (HMC)
prototype, we observe that compared to conventional DRAM,
HMC reaches a significantly higher operating temperature, which
causes thermal shutdowns with a passive cooling solution. In
addition, we find that even with a commodity-server cooling
solution, when in-memory processing is highly utilized, HMC
fails to maintain the temperature of the memory dies within
the normal operating range, which results in higher energy
consumption and performance overhead. Thus, we propose
CoolPIM, a collection of thermal-aware software- and hardware-
based source throttling mechanisms that effectively utilize PIM
by controlling the intensity of PIM offloading in runtime. Our
evaluation results demonstrate that CoolPIM achieves up to
1.4× and 1.37× speedups compared to non-offloading and naı̈ve
offloading scenarios.

I. INTRODUCTION

Recent advances in 3D-stacking technology and the increas-
ing need for energy efficient computing urged both industry
and academia to revisit processing-in-memory (PIM) concept.
Memory vendors such as Micron and Samsung have started
productizing or publicly discussing PIM [26], [31]. Recent
studies from academia have also shown promising perfor-
mance and energy improvements again [2], [23] as previously
demonstrated in the PIM research conducted decades ago [9].
With modern and emerging workloads that process massive
amounts of data with irregular memory access behaviors, such
as graph analytics, PIM is expected to play an important role
in providing better energy efficiency for computing environ-
ments.

One of the key challenges of enabling 3D stacking-based
PIM in conventional systems is maintaining a suitable thermal
conditions for its operations. This is because, (1) while conven-
tional memories offer tens of gigabytes of memory bandwidth,
PIM, implemented via 3D-stacking techniques often provides
hundreds of gigabytes of that. Thus, this increased bandwidth
introduces new thermal constraints when it is highly utilized,
as we will illustrate in Section III with measured data. (2)
In typical 3D-stacked designs, memory dies are vertically
stacked between a heat sink and a logic die, so their heat

transfer capability is not as effective as conventional memo-
ries; therefore, memory dies in a 3D-stacked design operate
in a higher temperature than conventional memories do. In
addition, the execution of PIM instructions further introduces a
non-negligible amount of heat, which exacerbates this thermal
constraint. In fact, for dual-inline memory modules (DIMMs),
the memory temperature rarely exceeds 85 ◦C [20], which
is the upper bound of the normal operating temperature
of DRAM 85 ◦C.1 Although JEDEC specifies the extended
temperature range of 85 ◦C-95 ◦C with doubled DRAM refresh
rate [15], operating DRAM in the extended temperature range
incurs higher energy consumption and performance overhead
than in the normal temperature range [20]. As such, DIMMs
are mostly used with a passive heat sink (or even without
any cooling solutions) without great concern about thermal
constraints or performance implications. However, for the
best performance of PIM, we need to carefully consider the
mentioned thermal constraints.

In this paper, we explore managing such thermal con-
straints of 3D-stacked designs so that new 3D-stacked, PIM-
enabled systems can effectively utilize hundreds of gigabytes
of memory bandwidth and PIM capability of 3D-stacked
designs. To understand the thermal challenges, we perform an
analysis on a real Hybrid Memory Cube (HMC) 1.1 prototype
while varying bandwidth utilization and cooling solutions. Our
analysis shows that HMC cannot even operate at the peak
bandwidth with a passive heat sink, which indicates that HMC
systems need a strong cooling solution even without utilizing
in-memory processing. Also, we model the next generation of
HMC, HMC 2.0, with the PIM functionality of HMC 2.0. Our
evaluations show that even a commodity-server cooling fails to
maintain the memory temperature below the normal operating
temperature range; thus forcing the device needs to shut down
or increase/decrease the DRAM refresh rate/frequency before
serving requests again.

Based on our observations, we propose CoolPIM, which
provides a collection of thermal-aware software- and
hardware-based techniques that effectively utilize PIM capa-
bility of 3D-stacked designs by dynamically controlling the
intensity of PIM offloading. The proposed technique maintains
the temperature of memory dies within the normal operating
temperature, which leads to higher performance compared to
naı̈ve offloading. We evaluate CoolPIM with a GPU system

1This is the case-surface temperature of DRAM.



with a wide range of graph workloads, and our results show
that CoolPIM improves performance up to 1.4× and 1.37×
compared to non-offloading and naı̈ve PIM offloading without
thermal considerations, respectively. In summary, this paper
makes the following contributions.

• We provide a thermal analysis of an HMC 1.1 prototype
across various bandwidth utilization and cooling solutions
to understand the thermal constraints of a real-world 3D
memory. To our knowledge, this is the first work that
evaluates a real HMC platform for thermal analysis.

• We provide a thermal analysis of HMC 2.0 with PIM
offloading using thermal simulation. Our results show that
the DRAM layers can exceed the normal operating tem-
perature even with a commodity-cooling solution when
PIM offloading is used.

• We propose CoolPIM, a collection of thermal-aware
software- and hardware-based source throttling tech-
niques that dynamically controls the intensity of PIM
offloading and provides trade-offs between the two design
options.

II. BACKGROUND

This section provides background on HMC and its processing-
in-memory (PIM) capability.

A. HMC Architecture

HMC integrates multiple DRAM dies and one logic die
within a single package using die-stacking technology. HMC
is organized into multiple vaults that are functionally and
operationally independent. The memory partitions within a
vault are connected via through-silicon vias (TSVs), each of
which may have multiple memory banks. Each vault incor-
porates a vault controller in the logic layer that manages the
memory partitions stacked on top of it, similar to a memory
controller. A crossbar switch connects all vault controllers and
external I/O links. Each I/O link consists of 16 input and
16 output serial lanes. The I/O links follow a packet-based
protocol, in which the packets consist of 128-bit flow units
named as FLIT [4]. Each response packet contains a tail field,
which includes a 7-bit error status (ERRSTAT[6:0]). When
exceeding the operational temperature limit, HMC sends back
an error warning by setting the error bits to 0x01.

B. PIM Instruction Offloading

Compared to conventional DRAM DIMMs, HMC not only
provides a dramatic improvement in memory bandwidth, but
also enables the possibility of supporting a variety of PIM
functionalities starting from the HMC 2.0 specification [4].
PIM instructions of HMC enable limited arithmetic and logic
functions by performing the following three steps: (1) Reading
data from a DRAM address, (2) performing computation on
the data in the logic layer, and (3) writing back the result to the
same DRAM address. According to HMC 2.0, PIM units per-
form the read-modify-write (RMW) operation atomically. That
is, the corresponding DRAM bank is locked during an RMW
operation, so any other memory requests to the same bank

cannot be serviced. In addition, all PIM operations include
only one memory operand – the operations are performed on
an immediate value and a memory operand. HMC 2.0 supports
several types of PIM instructions (i.e., arithmetic, bitwise,
boolean, comparison). Prior work also proposed instruction
extensions for floating-point arithmetic [23]. Depending on the
definition of specific commands, a response may or may not be
returned. If the response is returned, it includes an atomic flag
that indicates whether the atomic operation was successful.
Depending on the commands, the original data may also be
returned along with the response.

Benefits of PIM: By offloading the operations that process
irregular data, PIM instructions bring performance benefits
due to multiple factors. First, instruction offloading saves
bandwidth consumption between host and memory. The packet
size of regular memory requests and PIM operations are
summarized in table I. A 64-byte READ/WRITE request
consumes 6 FLITs in total, while a PIM operation needs
only 3 or 4 FLITs. Therefore, PIM offloading potentially can
save up to 50% memory bandwidth. The bandwidth savings
improve the performance of bandwidth-sensitive applications,
such as GPU applications with intensive memory requests.
Second, PIM offloading enable better cache utilization because
when the offloaded instructions bypass cache, they reduce
cache pollution and increase effective cache size. Third, PIM
helps avoiding the overhead of host atomic instructions in
CPUs [23]. However, because GPU applications usually ex-
hibits smaller atomic overhead and less sensitivity of cache
behavior, two last factors are less effective for them.

Architecture Support for PIM: In an HMC 2.0, a PIM
instruction is similar to a regular memory request except
that it contains a command field. Enabling PIM instruction
offloading, however, requires a few architectural changes for
identifying PIM instructions and maintaining data coherence.
Prior works have proposed two major methods for utilizing
PIM instructions. PEI [2] proposes new host instructions that
correspond to each of PIM instructions. Hence, programmers
or compilers use the new host instructions to perform PIM
offloading. Instead of modifying host ISA, GraphPIM [23]
specifies a PIM memory region and identifies host atomic
instructions that access the memory region as offloading
targets. While PEI maintains coherence between data copy
in cache and memory by invalidating/writing-back the cache
blocks accessed by PIM instructions, GraphPIM bypasses the
cache for the data of offloading targets by exploiting the
existing uncacheable region feature of x86 processors. As
demonstrated in [23], the cache-bypassing policy can bring
an additional performance benefit because of avoiding the

TABLE I
HMC MEMORY TRANSACTION BANDWIDTH REQUIREMENT IN FLITS

(FLIT SIZE: 128-BIT)

Type Request Response

64-byte READ 1 FLITs 5 FLITs
64-byte WRITE 5 FLITs 1 FLITs

PIM inst. without return 2 FLITs 1 FLITs
PIM inst. with return 2 FLITs 2 FLITs
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Fig. 1. Thermal evaluation of a real HMC prototype

unnecessary cache-checking overhead. In this paper, because
we focus on the PIM instruction offloading for GPU platforms,
in which the overhead of atomic operations usually is not
a major bottleneck, we follow the ISA-based method, and
incorporate new host-ISA instructions for each PIM instruc-
tion. In addition, to receive the benefit of cache-bypassing as
demonstrated in GraphPIM, we also allocate the offloading
target data in an uncacheable region.

III. HMC THERMAL CHALLENGES

The 3D stacking of DRAM and logic dies in HMC offers high
memory bandwidth and enables PIM functionality. However,
HMC exhibits high power density because of the die-stacking
architecture and non-trivial power consumption of the logic
layer, especially when PIM functionality is intensively utilized.
Such high power density increases the temperature of the
stacked DRAM dies and raises the thermal challenges for
the entire HMC module. In this section, to understand the
thermal challenges in HMC, we first evaluate an HMC 1.1
prototype by measuring the surface temperature of HMC
across various bandwidth consumption and cooling methods.
Then, we further evaluate/model an HMC 2.0 system with the
energy information released in prior literature. After that, we
analyze the thermal impact of PIM offloading and discuss its
performance tradeoffs.

A. HMC 1.1 Prototype Evaluation

Experiment Platform: To analyze the thermal characteristics
of HMC, we evaluate a real HMC prototype. The experiment
platform (Pico SC-6 Mini [29]) has a PCIe backplane (EX-
700 [28]) that can accommodate up to six compute modules
(AC-510 [27]). Each compute module contains a Kintex Xilinx
FPGA and an 4 GB HMC 1.1 [13]. The HMC has two half-
width (x8) links that provide up to 60 GB/s bandwidth. An
active heat sink is attached on the compute module for the
cooling of both FPGA and HMC. To evaluate the thermal
impact of HMC, we use a thermal camera and measure the
surface temperature of the HMC. The thermal resistance of
a typical transistor chip is insignificant compared with an
external heat sink (i.e., plate-fin heat sink) [6], and the in-
package junction temperature should be around 5 to 10 degree
higher than its surface temperature, given a 20 Watt power to
dissipate.

Observations: By measuring the surface temperature of
HMC with a thermal camera, we evaluate its thermal impact
with regard to bandwidth utilization and cooling methods.
Figure 1 illustrates the results of our evaluation. We further
elaborate our observations as follows.

1) Surface Temperature: Unlike conventional memories,
HMC operates at a higher temperature. The runtime thermal
images of the HMC under three types of heat sinks are
shown in Figure 1. We observe that the surface temperature
of highly utilized HMC exceeds 80 ◦C with a passive heat
sink, and the junction temperature reaches to or exceeds 90 ◦C
(with a typical thermal resistance from the package surface
to the internal chip). Even with a high-end active heat sink,
the surface temperature still reaches around 50 ◦C in our
experiments. Since HMC 2.0 has a higher bandwidth than that
of HMC 1.1 (60 GB/s), it will experience even worse thermal
issues. Another study on HMC 1.1 has observed similar trends
and behaviors [12].

2) Overheated Behavior: In our evaluation, with a passive
heat sink, HMC cannot operate at the full bandwidth and
shuts down when the surface temperature reaches around
85 ◦C (in-package DRAM temperature is close to 95 ◦C).
Higher temperature makes DRAM cells weaker and charge
leaking faster. Although by varying DRAM frequency and
refresh interval, DRAM can operate at higher temperatures,
our evaluation shows that the HMC prototype incorporates a
more conservative policy, in which HMC stops completely
when the DRAM stack is overheated. Although HMC can
be re-enabled after the chip is cool again, data is lost and
recovery delay is tens of seconds in our evaluation, which is
much longer than the processing time of typical GPU kernels.

3) Cooling Methods: Conventional DRAMs often use only
ambient air cooling without even a passive heat-sink, but HMC
chips require much better heat transfer capability. As shown
in Figure 1, with a passive heat sink, the surface temperature
exceeds 71 ◦C at an idle state, and HMC shuts down before
the full bandwidth is achieved. Even if we include a low-end
active heat sink, HMC temperature still reaches 60 ◦C at a
busy state. Thus, an HMC system requires a strong cooling
solution [12]. In addition, because newer generations of HMC
provides substantially higher bandwidth, more efficient cooling
methods are desirable.
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B. HMC 2.0 Thermal Modeling

In the previous section, we analyze the thermal issues of
HMC by evaluating a real HMC 1.1 platform. However,
HMC integrates PIM functionality starting from the HMC
2.0 specification [4], which has different off-chip bandwidth
and architectural configurations. In this section, we conduct a
thermal modeling of HMC 2.0 without PIM instructions based
on the energy data reported by Micron and results from our
gate-level synthesis.

Evaluation Methodology: To estimate the temperature of
each layer, we perform thermal simulation using KitFox [32]
and 3D-ICE [33]. We evaluate multiple cooling solutions from
passive to high-end active heat sink as summarized in Table II.
We follow the HMC 2.0 architectural configuration of an 8 GB
cube, which consists of eight DRAM dies and one logic die
as explained in Section II. (see Section V-A for more details
about our evaluation methodology).

Model Validation: Before estimating the temperature of
an HMC 2.0 cube, we first validate our thermal evaluation
environment by modeling an HMC 1.1 system with the
same cooling and bandwidth configuration and comparing the
result with the real system measurements. Figure 2 shows
the validation result. Our thermal modeling tool models the
temperature of DRAM dies, which is usually higher than the
surface temperature we measured using a thermal camera.
Thus, we also estimate the die temperature based on the
surface temperature using a typical thermal resistance model.
The results show that our thermal model has a reasonable error
compared to the real system measurements.

Observations: We summarize the thermal results in Fig-
ure 3 and Figure 4. With a commodity-server active heat
sink, the temperature of HMC reaches 81 ◦C at a full off-
chip bandwidth utilization (320 GB/s). Because of the physical
stacking structure of HMC, the lowest DRAM die and logic
layer reach the highest temperature. From the thermal map, we

TABLE II
TYPICAL COOLING TYPES

Type Thermal Resistance Cooling Powerb

Passive heat sink 4.0 ◦C/W 0
Low-end active heat sink 2.0 ◦C/W 1x
Commodity-server 0.5 ◦C/W 104x
active heat sink
High-end active heat sink 0.2 ◦C/W 380xc

bWe follow the same plate-fin heat sink model for all configurations.
cThe fan has 2x wheel diameter in this configuration.
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Fig. 3. Heat map with a full bandwidth utilization and a commodity-server
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can see that the hot spot appears at the center of each vault
because of the high power density of the logic component. We
also observe the thermal dependence of bandwidth utilization
and cooling types summarized as follows.

1) Bandwidth Impact: The power consumption of the logic
layer and DRAM dies is proportional to the bandwidth uti-
lization. As shown in Figure 4, the peak DRAM temper-
ature increases with higher bandwidth utilization. Because
of the bottleneck of the off-chip link bandwidth, without
PIM instructions, the maximum data bandwidth of HMC 2.0
is 320 GB/s (because of packet header overhead, aggregated
link bandwidth is 480 GB/s). Accordingly, with a commodity-
server active heat sink, the peak DRAM temperature reaches
81 ◦C at maximum bandwidth, and 33 ◦C at the idle state.

2) Cooling Impact: As demonstrated in our experiments of
both the HMC prototype and the modeling, HMC temperature
heavily relies on the cooling method of the HMC package.
To suppress the temperature below 85 ◦C for a full-loaded
PIM, we require the thermal resistance of the cooling structure
less than 0.27 ◦C/W, which falls within the realm of high-
end heat sinks. However, a strong cooling method is not
free. From Table II, the fan power, calculated using the fan
curve methodology [34], exaggerates from low-end heat sinks
(1x) to commodity (104x) and high-end (380x) heat sinks.
Specifically, the fan in a high-end plate-fin heat sink [36] of
0.2 ◦C/W consumes around 13 Watt (almost half as much
as the power of a fully-utilized HMC 2.0 cube) in our
extrapolated model of the fan power. Thus, for the sake of
system power usage effectiveness, we have a limited thermal
headroom for the HMC package given a restricted fan power,
and the remainder of the paper assumes commodity-server
cooling for the overall system.
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C. Thermal Trade-off of PIM Offloading

As discussed in the previous section, HMC maintains a rel-
atively reasonable operating temperature with a commodity-
server cooling. When PIM offloading is used, however, the
HMC would experience a non-trivial temperature increment
because of the additional power consumption of both logic
and DRAM layers. In this section, we discuss the thermal
impact of PIM offloading and its impact on performance.

Impact on Power & Temperature: For PIM functionality,
HMC incorporates functional units (FUs) that consume energy
when executing offloaded PIM instructions. Assuming that
a single FU operation consumes E Joule/bit, the additional
power consumption is computed as Power(FU) = E ×
FUwidth × PIMrate, in which FUwidth is the bit width of
each functional unit, which is 128bit, and PIMrate is the
number of PIM operations per second. As explained in Sec-
tion II, each PIM instruction in HMC 2.0 requires two DRAM
accesses (read and write) internally. Thus, PIM offloading
increases internal DRAM bandwidth utilization, which can
exceed 320 GB/s. This increase in internal DRAM bandwidth
utilization leads to additional DRAM power consumption that
also increases the temperature. Figure 5 shows the relationship
between PIM offloading rates and HMC temperature. In this
evaluation, we assume that a full-bandwidth utilization is
achieved by the PIM operations and regular memory requests.
In our modeling, because of the thermal limitation of 105 ◦C,
the maximum PIM offloading rate is 6.5 PIM op/ns. The
result show a clear positive correlation between the offloading
rate and temperature. As shown in Figure 5, for maintaining
the DRAM temperature below 85 ◦C, the PIM offloading rate
should be lower than 1.3 op/ns.

Performance Trade-off: By offloading operations that pro-
cess irregular data, a PIM system reduces external mem-
ory bandwidth consumption, which can be translated into
performance benefits for bandwidth-intensive workloads. A
high offloading rate provides more bandwidth savings, and
thus more performance benefits. However, as demonstrated in
the prior section, a higher offloading rate introduces thermal
problems in HMC, which brings a negative impact on the
performance of the memory system.

A conservative operation policy for cooling down an over-
heated HMC is to completely shut down the HMC. This
policy leads to an extremely long stall time as we observed
in the HMC prototype evaluation. Another policy is to fol-
low a dynamic DRAM management method as suggested
in prior literature [10], [18], which is changing the DRAM
frequency/refresh interval at high temperatures, but this one
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Fig. 6. Illustration of CoolPIM feedback control

also brings a non-trivial performance degradation because of
slowing down not only PIM instructions but regular memory
requests. To strike a balance between thermal limitations
and PIM offloading, we propose CoolPIM, a collection of
thermal-aware software- and hardware-based source throttling
techniques

IV. COOLPIM: THERMAL-AWARE SOURCE THROTTLING

In this section, we propose CoolPIM, which utilizes a simple
and practical method for controlling the intensity of PIM
offloading with thermal considerations. We first provide an
overview of CoolPIM and then discuss our software- and
hardware-based source throttling mechanisms respectively.

A. Overview

As shown in Figure 6, CoolPIM performs dynamic source
throttling using the thermal warning message from HMC.
At a high level, our throttling methods use a closed-loop
feedback mechanism that control PIM intensity. That is, a
thermal warning message leads to a reduction of the number
of PIM instructions that are executed within the HMC, thereby
decreasing the internal temperature of HMC. We present both
software- and hardware-based mechanisms, which offer dif-
ferent throttling granularities. The software-based mechanism
controls the number of PIM-enabled CUDA blocks launched
on a GPU using a specialized thermal interrupt handler and
software components in the GPU runtime; and therefore works
without additional hardware support. In contrast, the hardware-
based mechanism controls the number of PIM-enabled warps
and thus enables a more fine-grained control; but at the cost
of an extra hardware unit in each GPU core. We present our
mechanisms in the following sections.

B. Software-based Dynamic Throttling

Figure 7 summarizes the overview of our proposed software-
based dynamic throttling technique (SW-DynT), which con-
trols PIM offloading intensity at a CUDA block granularity.
The GPU runtime implements an offloading controller that
maintains a PIM token pool (PTP). The PTP value represents
the number of maximum thread blocks that are allowed to
use PIM functionality. Before launching a thread block, the
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thread block manager first needs to request a PIM token
from PTP. On a success, the runtime launches the original
code that contains PIM instructions, otherwise it launches a
pre-generated shadow non-PIM code (i.e., when no token is
available in the token pool). During execution, if HMC gets
overheated it issues a thermal warning message which will
then cause SW-DynT to reduce the PTP size. Note that HMC
2.0 provides thermal feedback in its specification via error
messages; hence, no hardware modification is required.

PTP Initialization: To estimate the initial PTP size,
the software-based technique performs a static analysis at
compile time. As discussed in Section III, the HMC tem-
perature (HMCTemp) is a function of the bandwidth uti-
lization (BWU ) and PIM offloading rate (PIMRate) (i.e.,
HMCTemp = F

(
BWU, P IMRate

)
). As both PIM and non-

PIM code consume similar link bandwidth, the PIM offloading
rate essentially dictates the difference in HMC temperatures
between PIM and non-PIM code.

PIMRate = PIMPeakRate × PIMIntensity

× (PTP Size/MaxBlk#)× (1−Ratio DivergentWarp)
(1)

Equation 1 shows that we estimate the PIM offloading rate
based on PIM peak rate (PIMPeakRate), intensity of PIM in-
structions (PIMIntensity), percentage of PIM-enabled CUDA
blocks, and the ratio of divergent warps (Ratio DivergentWarp).
Among the parameters, both PIMPeakRate and MaxBlk# are
hardware dependent features that can be measured by perform-
ing a simple trial run on the target platform or estimated from
the hardware specification. Also, we can compute the PIM in-
struction intensity in the compilation stage. Although the ratio
of divergent warps typically is around zero in typical GPU
programs, it can be large in some GPU applications, such as
graph analytics. In such cases, we can estimate its range with
the help of the algorithm knowledge. For example, topological-
driven graph algorithms have a high ratio, while warp-centric
ones have a low ratio. With all the parameters estimated and
measured, we first estimate the required PIM offloading rate
threshold from the hardware platform as Equation 1. Then,
we compute the PTP size with the given PIM offloading rate.
Because the feedback control only down-tunes the pool size,
we add a small margin to the computed value in order to be not
conservative (i.e., PTP Initial Size = PTPCalculated + margin);
we use a margin of 4 thread blocks for our evaluation.

Source Throttling: PTP maintains the information on the
maximum possible number of PIM-enabled blocks. Each new
PIM-enabled CUDA block requests a token from the pool
when being launched, and returns the token to the PTP when
completed the execution. PTP processes the token requests
based on the first-come-first-serve policy, which issues a token
to the requester until the number of on-going PIM-enabled
blocks reaches the PTP size. With a successfully fetched token,
the block manager launches the CUDA block using the original
PIM code by configuring the corresponding code entry pointer.
If the block fails to get a token, the block manager launches
the block using the generated non-PIM code. The dynamic

controlling of PIM and non-PIM CUDA blocks determines
the PIM offloading intensity and the temperature of the HMC.

As explained in Section II, when the temperature reaches a
warning threshold, the HMC sets the error status bits in the
response packets.4 When receiving the thermal warning mes-
sages from the HMC side, the host GPU will trigger a thermal
interrupt and forward it to the GPU runtime. The interrupt
handler then updates the PTP size to reduce the offloading
intensity of PIM instructions. We then calculate the new PTP
size as PTP Size = Min

(
PTP Size − CF, #issuedToken

)
by comparing the current number of issued tokens and the PTP
size after reduction. The reduction granularity is controlled
by ControlFactor (CF). A larger CF value allows for a fast
cooldown of HMC; however, it also increases the chance of
under-tuning the PTP size. A small control factor leads to a
longer time for reducing the pool size down to the proper
number and for cooling down the HMC.

Code Generation for Non-PIM Code: SW-DynT, depend-
ing on the thermal condition, launches thread blocks with a
PIM-enabled or non-PIM code. For example, if there is no
token left in the PTP, the runtime launches a new block with
an entry point of cuda_kernel_np. The GPU compiler
generates PIM-enabled and non-PIM kernels at compile time
by mapping CUDA atomic functions to PIM instructions or
vise versa. All PIM instructions, including the ones defined
in HMC 2.0 and the extended ones proposed in [23], can be
directly mapped to CUDA atomic functions. For instance, a
PIM_Add atomic instruction can be mapped to the CUDA
atomicAdd function. Note that because these mappings are
simple source-to-source translations at the abstract syntax tree
(AST) level (or at the IR level, which is also similarly simple),
changes to GPU compiler is trivial.

C. Hardware-based Dynamic Throttling

In addition to the software-based technique, we also present
a hardware-based dynamic throttling (HW-DynT) method. By
dynamically controlling PIM offloading in the GPU hardware
architecture, HW-DynT enables fast thermal-feedback reaction
and achieves fine-grained PIM intensity control.

Hardware PIM Offloading Control: Similar to SW-DynT,
HW-DynT performs offloading control based on the thermal
feedback from the HMC. However, when receiving a thermal
warning message, instead of forwarding the thermal interrupt
to the GPU runtime, HW-DynT directly performs source
throttling in the GPU hardware. To do so, each GPU core
includes an extra hardware component called PIM Control
Unit (PCU). When thermal warning is triggered, PCU collects
the thermal feedback from the HMC controller and reduces
the number of PIM-enabled warps by control factor (CF) in
warps. The PIM-disabled warps will then execute the GPU
kernel code while translating PIM instructions into non-PIM
ones. In HW-DynT, because of the hardware support, we
control the intensity of PIM offloading at the warp granularity,

4The current HMC 2.0 specification defines a single thermal error state,
but it can trivially define multiple error states as multiple unused error status
bits are available in the field.



TABLE III
EXAMPLES OF PIM INSTRUCTION MAPPING

Type PIM instruction Non-PIM

Arithmetic signed add atomicAdd
Bitwise swap, bit write atomicExch

Boolean AND/OR atomicAND/atomicOR
Comparison CAS-equal/greater atomicCAS/atomicMax

which is more fine-grained than the thread-block granularity
in SW-DynT. Also, unlike SW-DynT, which waits for the
execution of ongoing thread-blocks to finish, HW-DynT takes
effect immediately because PIM-enabled warps is disabled
in hardware. Because of the fast reaction of the hardware-
based mechanism, HW-DynT does not require a precise initial
configuration. Thus, we set the initial number of PIM-enabled
warps to the maximum.

Delayed Control Updates: HW-DynT allows a faster reac-
tion to the thermal feedback than SW-DynT does. Although
PIM offloading intensity can be changed immediately by
updating the PCU in HW-DynT, the actual HMC temperature
change requires a longer response time, which is usually
an order of milliseconds. If HW-DynT updates the PCU
too frequently in the course of the temperature change, we
could over-reduce the offloading intensity. Therefore, in our
mechanism, we intentionally delay the PCU updates so that
the number of PIM-enabled warps will be updated only after
the HMC temperature has been settled accordingly. In this
way, we address the over-reduction issue and also avoid the
performance overhead caused by frequent PCU updates.

Dynamic PIM Instruction Translation: Because all PIM
instructions in HMC 2.0 and the extended instructions pro-
posed in [23] have the corresponding CUDA instructions, each
PIM instruction is dynamically translated to a regular CUDA
instruction according to the PIM-enable/disable condition. As
shown in Table III, all PIM instructions have a corresponding
CUDA instruction, and thus can be interpreted as regular non-
PIM instructions during the decoding process in the frontend.

D. Discussion

Feedback-control Granularity: Our proposed methods fol-
low a closed-loop feedback control mechanism to keep the
HMC temperature within a proper range. Thermal warning
messages will trigger source throttling in the corresponding
software or hardware components. SW-DynT reduces the
number of PIM-enabled CUDA blocks, whereas HW-DynT
reduces the number of PIM-enabled warps. However, source
throttling does not lead to an immediate reduction of PIM
offloading intensity. To model this behavior, as shown in
Figure 8, we introduced a delay of Tthrottle (different values
for SW-DynT and HW-DynT). Similarly, HMC temperature
is sensed with an extra delay of Tthermal after offloading
intensity is changed. Therefore, the granularity of our feedback

Source	Throttling HMC	TemperatureOffloading	Intensity
TthermalTthrottle

Software-based Hardware-based

Tthrottle (Source	throttling	delay) ~0.1ms ~0.1us

Tthermal (Thermal	delay) ~1ms ~1ms

Fig. 8. Delay time in our feedback control

control cannot exceed the total delay of this loop, which is
Tthrottle + Tthermal. For instance, if an application requires
N control steps for achieving its optimal HMC temperature,
its overall control delay would be N × (Tthrottle +Tthermal).

Software- vs. Hardware-based: CoolPIM presents soft-
ware- and hardware-based techniques for dynamic source
throttling. Although both follow similar feedback control
mechanisms, they have differences in a number of aspects and
introduce interesting trade-offs. 1) Control delay: As explained
previously, our mechanism takes a delay of Tthrottle+Tthermal

for each control step. While for HW-DynT the source throttling
delay, Tthrottle, takes only tens of cycles, SW-DynT has a
much longer Tthrottle. This is because of the overhead of
interrupt handling and the delay for waiting the execution of
ongoing CUDA blocks. For GPU kernels with short execution
time, despite of the longer Tthrottle in SW-DynT, the thermal
response time, Tthermal, is still the major delay bottleneck.
Thus, both HW-DynT and SW-DynT would have a similar
control delay. However, for long-execution kernels, Tthrottle is
comparable or even larger than Tthermal. In this case, the per-
step control delay of HW-DynT would be significantly shorter
than SW-DynT. 2) Initialization: PTP initialization plays an
important role in defining the total number of control steps
before reaching to the optimal temperature. Since SW-DynT
has a long control delay, it relies on a proper initialization
to reduce the number of overall control steps. For SW-DynT,
we perform static analysis on target applications. Although
SW-DynT is only a one-time effort, it still adds an extra step
for software compiling. On the contrary, since HW-DynT has
a fast control reaction, it still can reach to a proper PIM
offloading intensity within a short amount of time without
any special initialization. 3) Complexity: Our software-based
technique utilizes the existing PIM hardware and requires only
non-intrusive modifications of the software runtime. However,
to achieve fine-grained and fast control of PIM offloading, the
hardware-based technique requires an extra hardware compo-
nent in each GPU core, which adds non-trivial modifications
compared to the software-based technique.

V. EVALUATION

A. Evaluation Methodology

Figure 9 shows an overview of our evaluation infrastructure.
First, we measured the temperature of a real HMC 1.0 using a
thermal camera. The results are used for validating our thermal
modeling environment. Then, we model an HMC 2.0 system
based on the specification and the power/area numbers derived
from the Synopsys tools. Finally, we estimate the system
performance by performing timing simulations together with
our thermal models.

Power Estimation: To measure power consumption of the
functional units (FUs) in HMC 2.0, we design a fixed-point
functional unit in Verilog and synthesize it with Synopsys
tools using a 28 nm CMOS library [35]. For DRAM and
logic dies, because no public information about the design
details is released, we use the energy numbers reported in prior
literature from Micron [14]. Average energy consumptions per
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bit are 3.7 pJ/bit for DRAM layers and 6.78 pJ/bit for the logic
layer. We then estimate the power consumption according
to the bandwidth utilization (i.e., power = energy/bit ×
bandwidth).

Area Estimation: HMC 1.1 die size is reported to be
68 mm2 [14]. Assuming the die is evenly partitioned into 16
vaults, each vault occupies 4.25 mm2. Since no VLSI-level
information of HMC 2.0 is released, we assume that HMC 2.0
occupies the same per-vault area as HMC 1.1. Similarly, we
also use the same 28 nm CMOS process for the logic layer and
50 nm process for the DRAM layers. In each vault, we place
a vault controller and a functional unit at the center. In our
synthesis, the functional unit occupies an area of 0.003 mm2.
We also use the area of a vault controller synthesized in 28 nm
CMOS from [3].

Thermal Modeling: To model the temperature of the HMC,
we use KitFox [32], which is an integrated power, thermal,
and reliability modeling framework. In KitFox, we use 3D-
ICE [33] for a detailed thermal analysis of the 3D-stacked
architecture. By following the specification, we model an 8 GB
HMC 2.0 which consists of a bottom logic layer and eight
DRAM dies stacked on top. We assume that a commodity-
server cooling capability is applied. Also, we use the same
process technology, floorplan, and power consumption as
previously explained in this section.

Performance Evaluation: We evaluate the performance of
our proposed technique by performing detailed timing simu-
lation because HMC 2.0 hardware is not publicly available.
We use the Structural Simulation Toolkit (SST) [30] as a
simulation framework, and MacSim [1], a cycle-level archi-
tecture simulator, for host-side GPU simulation. We also use
VaultSim, an in-house 3D-stacked memory simulator, to model
an HMC architecture. As explained in Section III, for the
thermal impact on HMC performance, we partition the HMC

TABLE IV
PERFORMANCE EVALUATION CONFIGURATIONS

Component Configuration

Host GPU, 16 PTX SMs, 32 threads/warp, 1.4GHz
16KB private L1D and 1MB 16-way L2 cache

HMC 8 GB cube, 1 logic die, 8 DRAM dies
32 vaults, 512 DRAM banks [4]
tCL = tRCD = tRP = 13.75 ns, tRAS = 27.5 ns [17]

4 links per package, 120 GB/s per link [4]
80 GB/s data bandwidth per link

DRAM Temp. phase: 0-85 ◦C, 85-95 ◦C, 95-105 ◦C
20% DRAM freq reduction (high temp. phases)

Benchmark GraphBIG benchmark suite [24]
LDBC graph dataset [7]
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Fig. 10. Speedup over the baseline system without PIM offloading

operating temperature into three phases, 0 ◦C-85 ◦C, 85 ◦C-
95 ◦C, and 95 ◦C-105 ◦C, and assume a 20% DRAM frequency
reduction when switching to a higher temperature phase.
Table IV summarizes the configuration of our evaluations.

B. Evaluation Results

In this section, we evaluate our proposed CoolPIM technique
with four system configurations, which are explained as fol-
lows. In our evaluation, all speedup results are compared with
the baseline system unless otherwise stated.

• Non-Offloading (Baseline): This is a conventional archi-
tecture using HMC as GPU memory and does not utilize
PIM offloading functionality.

• Naı̈ve Offloading: This configuration follows a PIM of-
floading mechanism similar to the previously proposed
PEI [2]. PIM offloading is enabled for all thread blocks
without any source control. The HMC uses a commodity-
server active heat sink.

• CoolPIM: This is our proposed thermal-aware source
throttling method, in which we keep the HMC in a cool
temperature range by performing source throttling. We
compare both CoolPIM (SW), which is a software-based
dynamic throttling method (SW-DynT), and CoolPIM
(HW), which is a hardware-based dynamic throttling
method (HW-DynT). Similarly, a commodity-sever active
heat sink is applied on the HMC.

• Ideal Thermal: This is the scenario, in which the HMC
has an unlimited cooling capability and remains at a low
temperature regardless of PIM offloading intensity.

1) Performance Evaluation: Figure 10 shows the perfor-
mance results of our proposed technique. Compared with the
non-offloading scenario, both software-based and hardware-
based technique achieves over a 1.3× speedup for dc,
bfs-ta, and pagerank. On average, CoolPIM improves
performance by 21% for software-based method and 25% for
hardware-based method over the baseline. On the contrary, in-
stead of providing performance benefits, naı̈ve offloading leads
to performance degradation for bfs-dwc and bfs-twc by
18% and 16% respectively. Except for sssp-dtc, all bench-
marks show only negligible or even negative performance
improvements over the baseline for naı̈ve offloading. Both
kcore and sssp-dtc show the same speedup for native-
offloading and CoolPIM scenarios. This is because the PIM
offloading intensity is low for those workloads, which does
not trigger the thermal issue of the HMC. In addition, we
can see that in the ideal thermal scenario, PIM offloading
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has a great performance potential, providing a performance
improvement up to 61% and 36% on average. However, such
performance benefits can only be achieved with an unrealistic
cooling capability, which is not applicable in a realistic system
because of the non-trivial power and space overhead.

Our performance evaluation demonstrates that although PIM
offloading shows a large performance benefit in the ideal
thermal scenario, such performance benefits will be completely
offset because of the memory slowdown triggered by the
thermal issue. By controlling PIM offloading intensity from
the source side, CoolPIM balances the trade-off between
performance and thermal awareness.

2) Bandwidth-Savings Analysis: Most of the GPU appli-
cations are bandwidth sensitive; therefore, the major source
of benefits from PIM offloading is from bandwidth savings.
Bandwidth savings improves not only energy efficiency of
data movement, but also performance. Thus, it is usually an
intuitive assumption that a larger bandwidth savings will lead
to better performance. However, because of the thermal issue
of PIM offloading, we observe quite different behaviors.

Figure 11 shows the bandwidth consumption of each work-
load normalized to the non-offloading baseline system. Naı̈ve
offloading reduces bandwidth by 39% for sssp-dwc, while
CoolPIM (HW) only reduces bandwidth by 21% for the same
benchmark. However, as shown in Figure 10, naı̈ve offloading
receives only a negligible performance improvement over the
baseline, while CoolPIM achieves a 1.28× speedup. We can
also observe the same behavior for all other benchmarks except
kcore and sssp-dtc. This is because these benchmarks
have a low PIM offloading intensity; therefore, offloading
does not trigger a thermal issue. Figure 11 demonstrates that
although naı̈ve offloading enables high bandwidth savings, it
instead bring performance degradation because of the thermal
issues caused by the offloading.

3) Thermal Analysis: As explained in Section III, the tem-
perature of an HMC depends on the utilization of its bandwidth
and intensity of PIM offloading. Because the graph computing
benchmarks used in our evaluation are bandwidth saturated,
the PIM offloading rate between the scenarios is the main
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deciding factor in determining the peak DRAM temperature
for the HMC. Figure 12 shows the average PIM offloading
rate with a naı̈ve-offloading method and with our proposed
CoolPIM mechanisms. Without any source throttling, naı̈ve
offloading reaches close to 4 op/ns (PIM operations per
nanosecond) for bfs-dwc and bfs-twc, and more than
3 op/ns for other benchmarks, such as bfs-ttc, sssp-dwc,
and sssp-twc. Such a high PIM offloading intensity would
lead to a high temperature of the HMC and trigger the thermal
issue. However, source throttling of CoolPIM keeps the PIM
offloading rate below 1.3 op/ns for all benchmarks. The
results demonstrate the effectiveness of our proposed method,
which successfully keeps the PIM offloading intensity within
a desirable range. Figure 13 shows the thermal evaluation
results. In the results, with the naı̈ve-offloading method, the
peak DRAM temperature exceeds 90 ◦C for most benchmarks.
Some of them, such as bfs-dwc and bfs-twc, even reach
95 ◦C. However, with our proposed CoolPIM, all benchmarks
maintain below 85 ◦C, keeping the HMC at a cool state.

4) Software- vs. Hardware-based Analysis: As explained in
Section IV-D, the software-based dynamic throttling usually
introduces much longer throttling delay than the hardware-
based method. However, because of the long thermal response
time, such difference in throttling delay may not be significant
in the overall control delay. To evaluate its impact, we also
analyze the PIM rate over time during our experiments.
We sample the target benchmarks at the granularity of one
millisecond and compare the PIM rate variations of software-
and hardware-based methods. In our results, we observe only
sub-millisecond difference in the overall control delay. To
better illustrate the observation, Figure 14 shows the PIM
rate variations over time for bfs-ta benchmark. We select this
benchmark because of its relatively larger delay difference
and longer execution time. As shown in Figure 14, naı̈ve
offloading maintains extremely high PIM offloading rate with
only small variations. However, both software- and hardware-
based CoolPIM methods successfully control the PIM rate and
keep it within a proper range. Although software-based method
consumes close-to one more millisecond than hardware-based
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one, it still takes only trivial time compared to the millisecond-
level thermal response time and the long total execution time.

VI. RELATED WORK

Processing-in-Memory: Recent advances in 3D-stacking
technology reinitiated the PIM study. Industry has proposed
several PIM designs, such as HMC [14], [26], High Band-
width Memory (HBM) [19], and Active Memory Cube
(AMC) [25]. Academic researchers have proposed multiple
fully-programmable PIMs for various applications and plat-
forms [8], [16]. In addition, PIM taxonomy also includes fixed-
function PIMs [11], among which HMC is one of the examples
of industrial proposals. Examples also include PIM-enabled
instructions [2] and GraphPIM [23]

Thermal Analysis: 3D-stacking exposes more severe ther-
mal challenges. Dragomir et al. conducted a thermal analysis
on a 3D server-on-chip architecture, and observed a 175-
200 ◦C chip hotspot within a 20 W power consumption [22].
Yasuko et al. examined the thermal feasibility of die-stacked
PIM [5]. with various cooling methods. Moreover, Hadidi
et al., in an HMC characterization study, observed HMC
shutdown around 85 ◦C [12].

Temperature Impact on DRAM: Temperature affects the
refresh interval and latency of DRAM cells. Guan et al.
analyze the temperature impact on DRAM refresh rate and
propose a temperature aware refresh mechanism for 3D-
ICs [10], which doubles the refresh rate for every 10 ◦C
increment after 85 ◦C. DDR4 DRAMs also incorporate a
similar doubled refresh rate at 85-95 ◦C [21]. Lee et al. exploit
the temperature impact on DRAM latency by profiling real
DRAM DIMMs and propose an adaptive-latency DRAM [18],
which can reduce the most critical timing parameters by a
minimum/maximum of 17.3%/54.8% at 55 ◦C.

VII. CONCLUSION

Processing-in-memory (PIM) offers promising performance
and energy gains, but its thermal constraints can prevent
applications from benefiting its full potential. To understand
the thermal impact of PIM, this paper performs an analysis
on a prototype of HMC across a wide range of bandwidth
utilization and cooling solutions. Our results show that naı̈vely
using PIM offloading functionality causes a thermal bottleneck
and degrades system performance even compared to the non-
offloading case depending on the workloads. Based on our
findings, we propose CoolPIM, a source throttling technique
that controls PIM offloading intensity to keep the operating
temperature in check. CoolPIM presents both hardware and
software mechanisms to overcome the thermal bottleneck in
HMC. The hardware method provides fast feedback reaction
and fine-grained control, while the software method requires
only non-intrusive changes in software runtime and compiler.
Compared to the non-offloading and naı̈ve offloading systems,
CoolPIM improves perfomance up to 40% and 37% for a set of
graph workloads by effectively managing thermal constraints.
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