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To exploit parallelism and scalability of multiple GPUs in a system, it is critical to place compute and data

together. However, two key techniques that have been used to hide memory latency and improve thread-

level parallelism (TLP), memory interleaving, and thread block scheduling, in traditional GPU systems are at

odds with efficient use of multiple GPUs. Distributing data across multiple GPUs to improve overall memory

bandwidth utilization incurs high remote traffic when the data and compute are misaligned. Nondeterminis-

tic thread block scheduling to improve compute resource utilization impedes co-placement of compute and

data. Our goal in this work is to enable co-placement of compute and data in the presence of fine-grained

interleaved memory with a low-cost approach.

To this end, we propose a mechanism that identifies exclusively accessed data and place the data along

with the thread block that accesses it in the same GPU. The key ideas are (1) the amount of data exclusively

used by a thread block can be estimated, and that exclusive data (of any size) can be localized to one GPU with

coarse-grained interleaved pages; (2) using the affinity-based thread block scheduling policy, we can co-place

compute and data together; and (3) by using dual address mode with lightweight changes to virtual to physical

page mappings, we can selectively choose different interleaved memory pages for each data structure. Our

evaluations across a wide range of workloads show that the proposed mechanism improves performance by

31% and reduces 38% remote traffic over a baseline system.
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1 INTRODUCTION

In parallel programming models, such as the general-purpose graphics processing unit (GPGPU)
programming model, the key to achieving high performance is to exploit thread-level parallelism
(TLP). One way to accomplish this is to have each thread process a distinctive part of data such
that the data process can be parallelized to the max. The effectiveness of this approach in achiev-
ing high-performance critically depends on whether the system can hide memory latency and
exploit all available compute resources. To hide memory latency and better exploit compute re-
sources, modern GPU systems take two orthogonal approaches: memory interleaving and thread
block scheduling, respectively. Memory interleaving is a technique that stripes small chunks of the
physical address space across different memory modules, thereby increasing memory bandwidth
utilization. Thread block scheduling determines to which GPU core each thread block is scheduled.
Dispatching a thread block to an available GPU core in a round-robin order would be the best way
to provide load balancing, thereby increasing resource utilization. While these techniques have
been effective in traditional GPU systems, in this article, we question their efficacy in systems
with multiple GPUs, since they might disrupt co-locating code and data.

Suppose a system has four GPUs, each with its own memory. GPUs are connected with the
processor-centric topology [25], constituting the GPU memory address space. While a GPU can
transparently access data in other GPUs, such an access uses the low-bandwidth off-chip links and
traverses the interconnect, incurring higher latency and leading to lower performance and en-
ergy efficiency. However, a local data access, which occurs when a GPU accesses data in its local
memory, utilizes high memory bandwidth, incurring lower latency and leading to higher perfor-
mance and energy efficiency. The GPU physical address space is interleaved at a fine granularity
to help improve memory bandwidth utilization. Let us take the transpose computation shown in
Figure 1 as an example to examine the impact that memory interleaving and thread block schedul-
ing have on performance. As its name suggests, this kernel transposes the in array and saves the
result in the out array. Each thread processes distinctive nfeatures elements (line 4) from (pid
× nfeatures)-th element of the in array (line 5).

Figure 2 and Figure 3 represent two cases where code and data are misaligned due to memory
interleaving and thread block scheduling. For both of them, we assume interleaving granularity of
256B, so four consecutive cache lines (cache line size is assumed to be 64B) are placed in a GPU,
and the next consecutive four cache lines are placed in the next GPU. We also assume the fair-
round-robin thread block scheduling policy. A thread block is color-coded based on the GPU it
is scheduled to, and a cache line is also color-coded based on which thread block accesses it. For
example, thread blocks 0 and 4 have the same color, and lines 0, 1, 8, and 9 have the same color as
thread blocks 0 and 4.

Figure 2 depicts a case in which each thread block processes two cache lines worth of elements
of the in array. Note that the number of elements that each thread block processes is determined
based on nfeatures. Accesses to lines 0 and 1 from thread block 0 are local, and hence efficient,
but accesses to lines 8 and 9 from thread block 4 are remote and hence inefficient. Fortunately, this
misalignment can be easily solved by scheduling thread block 4 to GPU 2, where lines 8 and 9 are
allocated. Figure 3 depicts a slightly different case in which each thread block processes three cache
lines worth of elements of the in array. Now, it is not as simple as the case of Figure 2, since some
of the accesses from a thread block are local and some are remote. Therefore, this misalignment
cannot be solved just by scheduling a thread block to another GPU.

Our goal in this article is to reduce such code and data misalignment, thereby achieving better
performance. First, to place code and the data that they access together, we identify which data (and
which part of it) each thread block accesses. We make two observations. First, the amount of data
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Fig. 1. Code snippet from K-means clustering.

Fig. 2. A case where code and data misalignment can be solved with thread block scheduling. Cache lines 8

and 9 are placed in GPU 2 due to memory interleaving. Thread block 4, which accesses them, is scheduled

to GPU 0. This misalignment can be easily solved by scheduling thread block 4 to GPU 2.

Fig. 3. A case where code and data misalignment cannot be solved with just thread block scheduling. Cache

lines 6 and 7 are placed in GPU 1, and cache line 8 is placed in GPU 2 due to memory interleaving. Thread

block 2, which accesses them, is scheduled to GPU 2. Scheduling thread block 2 to GPU 1 makes accesses to

cache line 8 inefficient.

used by one thread block is often determined by the number of threads in a thread block and the
amount of data each thread accesses. The latter can be estimated by either compile-time analyses
(for input-independent access patterns) or profiler-assisted techniques (for input-dependent access
patterns). Second, although the number of threads in a thread block is often input dependent, it is
determined before kernel invocation (specifically, even before data structures are allocated). With
these observations combined, we come to the conclusion that the amount of data used by one
thread block can be estimated. For these reasons, we utilize a compiler-based and profiler-assisted
technique to analyze the access pattern for each data structure and determine how each should be
layered across GPUs.

Second, to place all the data that a thread block accesses in the same GPU as the thread block
even in the presence of fine-grained memory interleaving, we make a slight change in hardware
and the operating system (OS) to realize coarser-grained (the OS page size) memory interleaving
in addition to the fine-grained (256B) memory interleaving. The key idea is to use different sets of
address mapping bits for each memory page depending on its anticipated access pattern, allow-
ing the two sets of mappings to co-exist; low-order bits are used to distribute data across GPUs,
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Fig. 4. Overview of a system with multiple GPUs.

whereas high order-bits are used to place an entire page in a single GPU. The granularity informa-
tion for each memory page is stored in the page table entry (PTE) and translation lookaside buffer
(TLB) entry. At the time a virtual address is translated into a physical address and the memory
request is sent, our mechanism uses the appropriate address mapping depending on the granular-
ity information. Admittedly, the concept of changing address mapping to change data layout or
to increase memory-level parallelism is not new [14, 59]. However, our proposed mechanism is
different from previous proposals in that it enables the coexistence of pages with different address
mappings while not requiring large-scale page migrations.

Third, to ensure that the code is scheduled to the GPU where the data it accesses is located, we
use an affinity-based scheduling mechanism. In traditional GPUs, thread blocks are scheduled to
any GPUs (and any SMs in the GPU) in the system in a nondeterministic fashion. To steer a thread
block and the data it accesses to the same GPU, we set an affinity between thread blocks and GPUs,
and use the information for scheduling.

Our article makes the following contributions:

• We observe that code and data alignment is critical in achieving high performance in a sys-
tem with multiple GPUs, and traditional memory interleaving and thread block scheduling
are at odds with efficient use of multiple GPUs.

• We propose a mechanism that utilizes a compiler-based and profiler-assisted technique to
decide whether to localize or distribute each data structure based on its anticipated access
pattern.

• We design a lightweight hardware mechanism that supports dual-mode address mapping at
a page granularity, so that a page can be either spread across GPUs or localized to a single
GPU. This mechanism enables pages with different address mappings to coexist in the same
memory space and the amount of each mode can be adjusted at runtime.

• We evaluate our proposed mechanism with a wide range of data-intensive workloads and
show that it improves performance by 31% and reduces 38% of remote data accesses over a
baseline system that does not have dual-mode address mapping or an affinity-based com-
putation and data co-placement mechanism.

2 BACKGROUND

2.1 Baseline Architecture

Figure 4 shows a high-level diagram of a system with multiple GPUs and the details of a GPU. In
this work, we assume that every GPU in the system can communicate with each other. While this
assumption may not entirely hold true in modern multi-GPU systems, where not all GPUs can
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Fig. 5. Distribution of memory pages according to the number of thread-blocks that access each page.

access each other, and peer access is only enabled between parts of them based on the topology,
with this assumption, the proposed mechanism can be applicable to not only future multi-GPU sys-
tems that feature all-to-all communication, but also Non-Uniform Memory Architectures (NUMA)
systems (irrespective of processor types) and multi-chip-module GPU systems [4]. We choose high
bandwidth memory (HBM) as our baseline [5] although our mechanism does not rely on any par-
ticular memory organization. HBM is composed of multiple memory channels and uses a wide-
lane bus interface to achieve high memory bandwidth and low power dissipation. Each GPU has
streaming multiprocessors (SMs) and high-speed off-chip links for remote data accesses—to/from
other GPUs and the CPU—and a crossbar network that connects SMs and HBM. We assume each
GPU is equipped with per-SM hardware TLBs and a highly threaded shared memory management
unit (MMU) that accesses page tables and is capable of performing virtual address translation [47,
48].

We assume the single-instruction multiple-thread (SIMT) execution model for our multiple GPU
system [13, 32, 39]. The CPU launches GPU kernels, and the runtime system partitions and dis-
tributes thread blocks across GPUs (and the SMs in the GPU) in the system. Up to the number of
SMs × the number of thread blocks per SM are concurrently executed in each GPU. There are two
kinds of networks in our system: (1) a network among GPUs (denoted as Remote in Figure 4), and
(2) a network that connects SMs in a GPU to their local memory (denoted as Local in Figure 4).
Such multiple GPUs with remote and local memory accesses are common in near-data processing
(NDP) [22, 57, 58].

2.2 Address Interleaving

To increase memory-level parallelism, or to reduce channel/rank/bank conflicts, fine-grained
memory interleaving is typically used in modern memory systems by striping small chunks of
the physical address space (often the size of a few cache lines) across different banks, ranks, and
channels. In a system with multiple GPUs, a page can be striped across multiple GPUs with fine-
grained memory interleaving, or the entire page can be allocated in a single GPU with coarse-
grained memory interleaving. Complex address decoding schemes have been studied before [46,
59]; however, for brevity, we assume a simple address mapping scheme. We discuss the applicabil-
ity of our mechanism in systems with complex address mapping schemes in Section 7.1.

3 MOTIVATION

Figure 5 shows distribution of memory pages according to the number of thread blocks that access
each memory page for various data-intensive workloads from publicly available GPU benchmark
suites [9, 37, 54]. It is observed that for some workloads, such as BFS, DC, PR, SSSP, BC, GC, and
NW, most pages are accessed by only one or two thread blocks. In traditional GPU systems, which
have one GPU and its local memory, distributing pages irrespective of which and how many thread
blocks access them helps improve the utilization of memory interfaces by distributing the memory
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traffic. However, in a system with multiple GPUs, where there is a big discrepancy between local
memory and remote GPU memory, distributing such pages across GPUs incurs lots of remote
traffic. Therefore, it is imperative to place such pages (exclusively used data) and the thread blocks
(computations) that access them in individual GPUs. In contrast, in the case of HS3D and HS, most
pages are accessed by almost all thread blocks. Even in the presence of multiple GPUs, it is better
to distribute such pages (shared data) across GPUs to reduce memory bandwidth contention.

From this, we make two observations. First, some pages are accessed exclusively by a few thread
blocks, while other pages are accessed, or shared, by many thread blocks. The exclusively used
pages should be placed in individual GPUs with the thread blocks that access them to eliminate
remote traffic, and the shared pages should be distributed across GPUs to reduce memory band-
width contention. Second, each application has different distribution of exclusive and shared pages.
For example, most pages in BFS are exclusively used, so the memory system should be capable of
localizing all of them. However, most pages in HS are shared, so the memory system should also
be capable of distributing all of them. These observations motivate the need for a mechanism that
can allocate localized pages versus distributed pages flexibly based on an application’s needs.

4 MECHANISM

In this section, we describe our mechanism that enables co-location of compute and data in a
system with multiple GPUs. Section 4.1 demonstrates how our mechanism can improve the case
where code and data misalignment cannot be easily solved with just thread block scheduling, as
shown in Figure 3. Section 4.2 describes a mechanism that either distributes data across GPUs or
localizes data to a single GPU at a page granularity. Section 4.3 describes a mechanism that utilizes
a compiler-based and profiler-assisted technique to decide whether to localize or distribute each
memory page based on its anticipated access pattern and introduces an affinity-based scheduling
algorithm that steers thread blocks to the GPU where the data they access is located.

4.1 Demonstration

Figure 3 in Section 1 depicts a case where each thread block accesses three consecutive cache
lines, and thread blocks are scheduled with the fair-round-robin scheduling policy. In that example,
due to the misalignment, just by improving the thread block scheduler cannot eliminate remote
accesses. For example, accesses to cache lines 6 and 7 from thread block 2 are remote, and hence
inefficient, whereas accesses to cache line 8 is local, and hence efficient. Scheduling thread block
2 to GPU 1 converts accesses to cache lines 6 and 7 to local, but the previous local access (access
to cache line 8) becomes remote.

Figure 6 demonstrates how our mechanism solves this misalignment. First, our mechanism iden-
tifies which cache lines are accessed by which thread blocks (Section 4.3). Second, based on the
identification and analyses, it decides whether to distribute the data across GPUs with fine-grained
memory interleaving or allocate them in a single GPU with coarse-grained memory interleav-
ing. Our mechanism enables selective coarse-grained allocation on top of fine-grained interleaved
memory (Section 4.2).

4.2 Dual-Mode Address Mapping

Hardware Support. To localize exclusively used pages in the presence of fine-grained memory
interleaving, we use different sets of bits for address mapping for each memory page depending
on the anticipated access patterns, allowing the two sets of mappings to co-exist. The default (fine-
grained) address mapping distributes a page across GPUs (as is done today), and the alternative
(coarse-grained) address mapping allocates (or localizes) an entire page in a single GPU (as is desir-
able for exclusively used data). We refer to the distributed page as FGP (fine-grained interleaved
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Fig. 6. Representation of what our mechanism can do in the case where code and data misalignment cannot

be easily solved with just thread block scheduling. It allocates consecutive cache lines 0-11 in GPU 0 and

schedules thread blocks 0-3 to GPU 0 so that all the accesses to these cache lines will be efficient. Cache

lines 12-23 are marked to represent which thread blocks access them.

Fig. 7. Hardware for a dual-mode address mapping.

page) and the localized page as CGP (coarse-grained interleaved page). FGP is better suited for
the data that are shared among (or accessed by) multiple GPUs. However, CGP is better suited
for the data that are exclusively accessed by a single GPU. Note that once hardware provides the
ability to map an entire page to a GPU (as is enabled by our selective use of coarse-grained address
mapping), the OS could allocate arbitrarily large objects within a GPU by mapping all the virtual
pages of that object to the physical pages (CGPs) in the GPU.

PTEs, TLB entries, and cache lines are extended to indicate the granularity information, fine-
grained or coarse-grained, for each page, as shown in Figure 7. The granularity bit in a PTE is set
by the OS when a CGP is allocated, and the granularity bit in a cache line is set when the cache
line is allocated. When the granularity bit is set, indicating CGP, the lowest bits from the Physical
Page Number (PPN) are used to index GPU, whereas the highest bits from the page offset are used
for FGPs. For example, in a system with four GPUs, when a cache line is evicted from the last
level cache (LLC), a write-back request is sent to the memory indexed by either the bits [13:12]
when the granularity bit is set (for CGPs) or the bits [11:10] when the granularity bit is not set (for
FGPs). Be assured that we only change the mapping of the physical address to memory and not the
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Fig. 8. Conceptual diagram of page-group. The number indicates a sub-block address and the sub-blocks of

the same color belong to the same OS page.

physical address itself. Thus, cache is accessed with the original physical address, irrespective of
the granularity information, and our mechanism does not have any impact on the cache coherence
protocol or virtual address translation.

System Software Support. The OS should be aware of the dual-mode address mapping (1) to
indicate the granularity information in the PTEs and TLB entries, and (2) for page management,
such as free page management or page replacement. It is important to note that it requires a set
of adjacent FGPs to allocate a CGP (technically, a set of CGPs are allocated together). Consider
a system where an FGP spans N consecutive GPUs, occupying a contiguous block of M bytes in
each GPU memory. In that system, a CGP occupies N × M contiguous bytes within a single GPU
memory. Therefore, a single CGP occupies the space that would have been utilized by N different
FGPs within one GPU memory (but does not utilize any of the space those N FGPs would have
occupied in other GPU memories). As a result, each block of N contiguous pages must uniformly
be configured as FGP or CGP to avoid data layout conflicts. However, different blocks of N pages
may be independently configured as FGP or CGP based on application or OS requirements.

For example, when FGP 0, in Figure 8(a), consisting of sub-blocks 0, 1, 2, and 3, is converted
to a CGP, there are conflicts with sub-blocks 4, 8, and 12 from the three subsequent FGPs (each
from FGP 1, FGP 2, and FGP 3, respectively). Therefore, those four FGPs must be converted to
CGPs together, as shown in Figure 8(b). We use the term page-group to refer to a set of pages that
must be converted together. Hence, the OS should decide between FGP and CGP at a page-group
granularity and can switch between FGP and CGP only when all the pages in the page-group are
free.

4.3 Compute-Data Co-location Algorithm

In traditional GPUs, thread blocks can be scheduled in any order, as they are supposed to run
concurrently. The number of thread blocks that can run together in one SM is determined by
thread block resource constraints. Normally, thread blocks are scheduled in order and as soon as
one thread block retires, next thread block is scheduled to any available SM in any available GPU.
However, to benefit from careful data placement, as is enabled by our dual-mode address mapping
mechanism, thread blocks and the data they access must be co-located in the same GPU. To steer
thread blocks and the data they access to the same GPU, we set an affinity between thread blocks
and GPUs.
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4.3.1 Affinity-based Work Scheduling Algorithm. We compute which GPU each thread block
has affinity to using the following equation:

affinity =

(
block_id

Nblocks_per_GPU

)
mod NGPUs, (1)

where block_id is flattened for multi-dimensional data based on row-major ordering (i.e.,
blockIdx.y × blockDim.x + blockIdx.x). Nblocks_per_GPU is the number of thread blocks that
can run concurrently in one GPU. For example, if one GPU has four SMs and each of which can
run six thread blocks, then Nblocks_per_GPU is 24. When N is the number of GPUs and T is the total
number of thread blocks, T/N thread blocks have the same affinity. With this affinity information,
whenever an SM is available, instead of assigning any unscheduled thread block to it, the scheduler
picks one that has affinity to that GPU.1 This may potentially lead to load imbalance compared to
the baseline of assigning any available thread block to any SM in the system. However, the number
of thread blocks typically being much greater than the number of GPUs reduces the likelihood of
load imbalance.

The hardware and runtime system must be extended to support this modified scheduling
scheme. The scheduling algorithm could be optimized further to select thread blocks from other
GPUs when a GPU does not have any work left to do, similarly to the work-stealing algorithm.
However, in our 20 evaluated benchmarks, only one suffered performance degradation due to the
affinity-based scheduling algorithm. Therefore, we did not implement the work-stealing optimiza-
tion.

4.3.2 Data Placement Algorithm. While the dual-mode address mapping enables the ability to
localize an entire page in a single GPU, the question of how to identify the exclusively accessed
or shared pages remains. This identification is particularly difficult for GPU systems, because data
structures are allocated by the CPU before kernel invocations and are used by all threads in the
kernel later.2 To this end, we propose a compiler-based and profiler-assisted technique that identi-
fies the amount of data used by one thread block for each data structure and decides which address
mapping is desirable for the data structure (technically, for the pages in which the data structure
is allocated). It is based on the following four observations. First, the amount of data used by one
thread block is often determined by the number of threads in a thread block and the size of data
structure that each thread accesses. Second, compile-time (symbolic) analyses can be used to detect
if there exists a regular access pattern for each data structure. Third, profiler-assisted techniques
can be used to estimate input-dependent accesses (more on this is explained later). Fourth, al-
though the number of threads in a thread block is often input dependent, it is determined before
a kernel invocation (generally, even before data structures are allocated).

Based on these observations, we implement a compile-time analysis on LLVM infrastruc-
ture [29]. We extend the FunctionPass, which enables traversing all the kernel functions at compile
time, and perform the symbolic analysis. For all the memory accesses inside kernels, we analyze
the “GetElementPtrInst” LLVM instruction, which performs the index computation. Based on the
index expression and the types of variables it uses, we examine if there exists a runtime-constant
stride (RCS) between two consecutive thread blocks. In this examination, we check if an expres-
sion uses only the (1) kernel-invocation-constants, such as parameters, block/grid dimensions, or
global constants, which are determined before kernel invocation and remain constant throughout

1This scheduling algorithm is conceptually similar to the guided scheduling policy in OpenMP, where the programmer

specifies chunk size (the number of loop iterations that one thread executes).
2We only discuss global data structures, which may be accessed by all the threads in the system, since local data structures

are easily identifiable with specific keywords.
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the kernel execution, (2) thread index, thread block index, and/or loop index (for local loops in the
kernel). If such a stride is found, then we insert instructions in the CPU code to compute the stride
distance between two consecutive thread blocks at runtime. We use profiler-assisted techniques
for the case where the access pattern is input dependent and only when the input is not changed
frequently (e.g., graph computing workloads). Note that the profiler performs a similar examina-
tion as the compile-time analysis. Our mechanism also uses FGPs for irregularly accessed data,
shared data, or parameter objects, as they are accessed by many thread blocks.

Algorithm 1 shows the compile-time analysis algorithm. We use the definition-use (DU) chains
to trace back to the definition of all the source operands of each GetElementPtrInst LLVM instruc-
tion. To simply handle control flows within the IR, we consider only the initial value that reaches
a PHI node, which is used by the LLVM IR to represent an static single assignment (SSA) form
such that every use has exactly one reaching definition. That is, among the incoming values, we
only consider the instruction that dominates the PHI node. For this purpose, we use the “Domina-
torTreeWrapperPass” analysis of LLVM. Here, for brevity, we only consider the case where index
does not use value loaded from previous memory instruction. Also, we rule out the case where the
RCS expression cannot be algebraically simplified to constants during compile-time. To handle
these cases, we postpone the decision to runtime (before the kernel is launched) and instrument
the code to compute the RCS for some random thread blocks. We take advantage of the fact that an
accurate analysis is not necessary, since it is just used to decide the memory layout, not impacting
correctness.

ALGORITHM 1: Compile-time Runtime-Constant Stride (RCS) Analysis

Input: LLVM IR representation of GPU compute kernels

1: for each array index instruction: GetElementPtrInst do

2: for each source operand do

3: Recursively trace back to the root definition until blockIdx is found
4: if A memory load is found then // uses value loaded from previous memory instruction
5: Skip this instruction // RCS cannot be computed
6: else if blockIdx is not found then

7: Finish computation // RCS is zero
8: else

9: Continue
10: end if

11: end for

12: if An RCS � 0 is found then

13: Clone GetElementPtrInst to indexκ , and replace blockIdx with a constant K
14: Create another clone of GetElementPtrInst to indexκ−1, and replace blockIdx with a

constant K − 1
15: Create a subtract instruction Δ = indexκ − indexκ−1, and perform algebraic simplifica-

tion on it
16: if Δ contains only kernel-invocation-constants, and the block and thread indices are

canceled out then

17: return RCS // Runtime-Constant Stride is found
18: end if

19: end if

20: end for
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Where data should be located can also be computed, as the affinity-based work scheduling algo-
rithm determines where computation will be performed. For example, if one thread block accesses
the first B bytes of a data structure and N consecutive thread blocks will be scheduled to the SMs
in a GPU, the mapping algorithm allocates contiguous chunks of B × N bytes on each GPU. The
equations to compute chunk_size and stack_id are as follows:

chunk_size =min(4KB,B × Nblocks_per_GPU), (2)

IDGPU =

(
virtual_addr − obj_start_addr

chunk_size

)
mod NGPUs. (3)

Please note that the chunk_size is upper-bounded by 4KB, since an arbitrary number of pages
can be allocated in a single GPU for any large object with hardware support to map an entire page
to a single GPU with CGP. obj_start_addr is the starting virtual address of an object. When the
chunk_size is not a multiple of physical page size, we round up to the next multiple of pages. The
resulting misaligned pages will be shared by SMs from two consecutive GPUs, but this is still better
than un-aligned distribution of data across all GPUs. Commonly, Nblocks_per_GPU is moderately big,
since multiple thread blocks can run concurrently on an SM, which often results in a big chunk_size
(greater or close to 4KB). Note that programs often use more than one data structure. Our proposed
mechanism supports multiple data structures, since we compute the chunk_size for each data
structure using its own B size based on the structure’s access pattern.

We demonstrate how our data placement algorithm works with Figure 1, a code snippet fromK-
means Clustering. The size of each data element can be identified and computed at compile-time,
and the first element and the number of consecutive elements that each thread accesses can also be
analyzed with our compile-time analysis routine. In this example, each thread accesses nfeatures
consecutive elements from (pid × nfeatures)-th element, as shown in lines 4 and 5 of Figure 1.
Since each thread block has blockDim.x threads, blockDim.x × nfeatures × sizeof(float)
is the B value. This means that the first thread block accesses B bytes from the starting address of
the in array and the second thread block accesses next B bytes. Note that the number of thread
blocks and threads per thread block are determined before kernel invocation.

When a cudaMalloc function is called, our extended runtime system uses this information and
the B value to compute the chunk_size using Equation (2) for the corresponding data structure
and decides whether it should be allocated with the FGP or CGP. If a data structure is accessed by
multiple kernels, then the information of the first kernel that accesses it is used to compute the
number of thread blocks per GPU. Accesses to three-dimensional (3D) data structures are often
more complicated than those to 1D or 2D data structures, for which the index is typically computed
with both blockDim.x and blockDim.y. In this article, we focus on 2D data structures and leave
the extension to support the 3D data structures and more complex data structures for the future
work.

5 EVALUATION METHODOLOGY

5.1 Hardware Configurations

We evaluate our mechanism using SST [52] with MacSim [27], a cycle-level microarchitecture
simulator. Low-level DRAM timing constraints are faithfully simulated using DRAMSim2 [53],
which was modified to model the HBM 2.0 specification [5]. Our default system configuration
comprises the CPU and four GPUs, where each GPU consists of four SMs and 8GB HBM memory.
We model the GPU based on the NVIDIA Fermi architecture [40]. More details on the simulated
system configuration are provided in Table 1. We use 128B interleaving and 4KB interleaving to
form the FGP and CGP, respectively. Each HBM channel is modeled to provide 32GB/s of peak
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Table 1. Configuration of Simulated System

System 4 GPUs connected to the CPU with processor-centric topology [25]
GPU Core: 4 2GHz SMs, fair-round-robin/affinity-based thread block scheduling policy

Cache: 32KB core-private L1, 8-way, 4-cycle, 1MB shared L2, 16-way, 10-cycle
Network: point-to-point network, 256GB/s Internal & 16GB/s Remote bandwidth

Memory Each GPU has an 8GB HBM (HBM 2.0), interleaved at 128B

Table 2. Benchmark Categories

Category Benchmarks

Block Exclusive Breadth-First Search (BFS), Degree Centrality (DC), Page Rank (PR),
Single-Source Shortest Path (SSSP), Betweenness Centrality (BC),
Graph Coloring (GC), Needleman-Wunsch (NW)

Core Exclusive K-means Clustering (KM), Gaussian Elimination (GE), k-Nearest
Neighbors (NN),
CFD Solver (CFD-M), Sparse-Matrix Dense-Vector Multiplication (SPMV),
Sum of Absolute Differences (SAD), Dense Matrix-Matrix Multiply (MM)

Block Majority Connected Component (CC)
Core Majority MUMmerGPU (MG), Discrete Wavelet Transform (DWT)

Sharing Triangle Count (TC), Hotspot3D (HS3D), Hybrid Sort (HS)

memory bandwidth; therefore, 256GB/s of total internal memory bandwidth is exploitable by each
GPU. We model a Remote network to provide 16GB/s of memory bandwidth. We also perform
detailed sensitivity studies, where we vary the bandwidth of Local and Remote networks.

5.2 Benchmarks

We use 20 memory-intensive benchmarks from GraphBIG [37], Rodinia [9], and Parboil [54]. We
use the LLC Misses Per 1000 Instructions (MPKI) as an indicator for the memory-intensiveness.
We classify a benchmark as being block-exclusive if almost all pages (>90%) are accessed by only
one thread block, core-exclusive if almost all pages (>90%) are accessed by one GPU (i.e., multiple
SMs in the same GPU), block-majority if the majority of pages (>60%) are accessed by only one
thread block, core-majority if the majority of pages (>60%) are accessed by one GPU, and sharing
if most of the pages are accessed by multiple GPUs. Table 2 summarizes the benchmarks and the
category they belong to.

6 EVALUATION RESULTS

6.1 Performance

Figure 9 shows the performance improvement of CODA for the benchmarks described in Table 2.
FGP-Only represents the baseline where every page is interleaved at 128B across GPUs, and CGP-
Only represents the case where consecutive 4KB pages are allocated in consecutive GPUs in a
circular order; this represents affinity-unaware data placement even when coarse-grained data
allocation is available. CGP-Only+First-Touch-based Allocation (FTA) represents the case where
an entire page is allocated to the GPU that first touches the page. We ignore the accesses from
the CPU in determining the first access, since all pages are initially allocated by the CPU before
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Fig. 9. Speedup over FGP-Only, CGP-Only, and an ideal first-touch-based allocation scheme (CGP-Only +

FTA).

kernel invocation.3 Even though this is not a practical implementation due to the lack of first-touch
information at the time data are allocated (and often initialized) by the CPU, this can be a good
indicator of the potential effectiveness of coarse-grained allocation for each benchmark. One sim-
ple way to implement first-touch-based allocation is to migrate pages on first access. We observed
that this migration-based first-touch allocation is not very effective (not shown, 7% speedup, as
opposed to 19% speedup of CGP-Only+FTA) mainly due to small number of reuses of memory
pages after migrations (due to burst and clustered access patterns); that is, the migration overhead
is not mitigated. This makes a case for better data allocation rather than reactive data movement.

Our evaluation results show that CODA outperforms both FGP-Only and CGP-Only by 31%.
CODA even outperforms CGP-Only+FTA for most benchmarks. For pages that are exclusively
accessed by a single GPU, allocating those pages on that GPU brings a substantial reduction in
remote data accesses and increase in local data accesses. This variation in remote and local data
accesses directly leads to the performance improvement, as remote data accesses are limited by
the low bandwidth of the off-chip links, whereas local data accesses exploit the large internal
memory bandwidth. Perhaps more importantly, such bandwidth discrepancy becomes even more
pronounced as the interconnection network becomes overwhelmed with more remote data ac-
cesses. Though lower bandwidth of the off-chip links does not necessarily mean longer memory
access latency, when coupled with the off-chip communication overheads such as queuing delays
and/or external transfer time, average memory access latency can be significantly affected by the
number of remote data accesses as well.

Notably, our mechanism localizes accesses whenever possible even for the benchmarks classified
as sharing, in which most pages are accessed by many SMs (in multiple GPUs), thereby achieving
performance improvements. The amount of performance gain each benchmark obtains depends
on the distribution of accesses to page types (exclusive pages vs. shared pages). Specifically, if a ma-
jority of accesses are made to exclusive pages, the benchmark could gain a significant performance
improvement from CODA. This is the case for TC, for example.

Overall, our mechanism achieves 1.56× and 1.13× average performance improvements over the
baseline for block-exclusive and core-exclusive benchmarks, respectively. This is particularly ef-
fective in graph algorithms with large numbers of neighbor accesses (e.g., BFS, DC, PR, and SSSP),
which are difficult to handle efficiently.

3NVIDIA PASCAL architecture or later GPUs support demand paging and runtime page migration [41, 42]. On those devices

along with a newly introduced data allocation API (cudaMallocManaged), the statement that all pages are initially allocated

by the CPU may not be true. Pages can be allocated by a GPU, generating page faults. While conceptually uncomplicated

to use, demand paging and page migration cause significant performance degradation [6, 60]. Therefore, in this study, we

assume and evaluate traditional and more general GPU programming model.
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Fig. 10. Comparison of local and remote data accesses between FGP-Only and our mechanism (CODA).

Fig. 11. Speedup with different remote bandwidth among GPUs.

6.2 Local vs. Remote Access

Figure 10 shows distribution of memory accesses, local versus remote, for the baseline and how it
varies with our mechanism. Our mechanism significantly reduces remote data accesses for all the
evaluated benchmarks but one, GE.4 A substantial reduction in remote data accesses and an increase
in local data accesses contribute to the performance improvement for the following reasons. First,
local data accesses can utilize the large internal memory bandwidth, while remote data accesses are
limited by the lower memory bandwidth of the off-chip links. Second, for the remote data accesses,
a great amount of time could be spent on waiting for network due to the off-chip communication.
This can be incurred as a result of limited network bandwidth, but can be exacerbated further
due to the artifacts of the off-chip communication, such as queuing delays, routing delays, and so
on. Our mechanism significantly reduces remote data accesses, enabling the utilization of large
internal memory bandwidth and also mitigating the effect of interconnection network congestion
by placing memory pages in the same GPU in which the computation is to be performed.

Our mechanism is especially effective for the block-exclusive and core-exclusive benchmarks.
On average, 47% and 34% remote data accesses are reduced, respectively. Even for the sharing
benchmarks, by identifying the pages that are accessed by a few thread blocks or SMs, and allo-
cating them where the computation is to be performed, our mechanism reduces 32% remote data
accesses.

6.3 Sensitivity to Bandwidth

Even for highly provisioned systems with unrealistically large Remote bandwidth and low remote
memory access latency, co-location of thread blocks and the data they access improves perfor-
mance, as shown in Figure 11. This is because even in such systems, remote memory accesses
cannot be completely free from all resource conflicts. Careful data placement, as is enabled by our

4As opposed to the case of TC in Section 6.1, GE has a majority of accesses to shared pages, and for this reason, remote data

accesses are not reduced a lot with CODA, even though it is classified as core-exclusive, because we classified benchmarks

based on the distribution of pages, not based on the distribution of accesses to page types (exclusive page vs. shared page).
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Fig. 12. PageRank performance with different graphs.

mechanism, can significantly reduce the possibility of such conflicts and therefore can contribute
to the performance improvement.

This evaluation is to show how sensitive performance is to Remote bandwidth. We can ob-
serve that when 256GB/s of Remote bandwidth is available, Remote bandwidth is no longer a
performance bottleneck (relative performances of all categories are close to 1, except for the block-
exclusive category). The big gap in the core-exclusive category appears, because the applications in
that category are limited by Remote bandwidth of 64GB/s and not by 128GB/s Remote bandwidth.

Even when a system has 256GB/s of aggregated Remote bandwidth, our mechanism improves
performance by 8% (up to 23%). It should be noticed that as the gap between Local bandwidth
and Remote bandwidth increases (Remote bandwidth is decreased while Local bandwidth remains
the same), our mechanism provides more benefit by reducing remote data accesses and opening
up more opportunity to exploit large internal memory bandwidth, thereby mitigating the perfor-
mance penalty of the off-chip communication (performance improvement goes up to 15.2% and
37.4%, respectively).

6.4 Sensitivity to Graph Properties

In graph computing, the number of vertices and their neighbors that each thread block accesses
highly depends on graph properties. To examine the impact of the graph properties on our pro-
posed mechanism, we differentiate the properties that can be estimated at the time the graph is
preprocessed5 from those that cannot be estimated. Basic graph properties such as the number of
vertices and edges can be obtained at the time the graph is preprocessed. These, combined with
the number of threads per thread block, which is determined based on the resource constraints of
the underlying hardware, can be used to estimate the average number of edges that each thread
block accesses (μ) before kernel invocation and the standard deviation (σ ) of it. The coefficient of
variation of a graph, which can be estimated as σ/μ , is a good indicator of how regular a graph is:
A graph with a small coefficient of variation is considered regular. Therefore, the granularity at
which the graph should be distributed, or the block stride distance, can be determined.

Figure 12 compares the performance of FGP-Only and CODA, using the PageRank workload.
The evaluation is based on four real-world graphs, which have 59K to 9M vertices. Graphs are
sorted based on their regularity: Graphs with a smaller coefficient of variation appear toward
the left side of the figure. The coefficient of variation of each graph is also depicted. We confirm
that the effectiveness of our mechanism depends highly on graph properties. Regular graphs
benefit more from our mechanism (55%) than irregular graphs (5%), since the estimation accuracy
depends only on the properties that can be estimated at the time graph is preprocessed. Notably,

5The term preprocessing generally implies a heavy-weight operation such as a clever partitioning to reduce communica-

tion. In this study, however, we only extract basic properties of a graph without scanning through the entire graph.
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Fig. 13. Performance of multiple applications.

CODA does not degrade performance in any case, since it detects the memory pages that are
exclusively accessed by one GPU and localizes them with CGP, while distributing other memory
pages with FGP, as in the case of FGP-Only.

6.5 Multiprogrammed Workloads

To further analyze the impact of having hardware that provides the ability to map an entire page
to a single GPU using CGP, we evaluate our CGP-Only configuration with four mixes of multi-
programmed workloads. Each benchmark is chosen randomly from each category to construct a
multiprogrammed workload. Figure 13 compares the performance of CGP-Only with that of FGP-
Only, showing that the CGP-Only outperforms the FGP-Only for all the workloads. With FGP-Only
hardware, every memory page is distributed across all GPUs, which results in a significant number
of remote data accesses from all applications. With hardware that can map an entire page to a sin-
gle GPU, as enabled by our mechanism, however, memory pages that an application accesses can
be allocated to the GPU where the application is executed, and hence, all the accesses can exploit
the large internal memory bandwidth within the GPU. This is an important contribution, since
it is infeasible or difficult to reduce remote data accesses in the presence of multiple workloads
running in a system.6

6.6 Impact of Interleaving Granularity

So far we have demonstrated the necessity of the coarse-grained memory interleaving (techni-
cally, selective use of CGP and FGP) for the efficient use of multiple GPUs. One might consider
using just coarse-grained memory interleaving in a system with multiple GPUs. However, in this
section we present the performance of FGP-Only and CGP-Only with a centralized GPU that has
the same overall compute capability as that of all the GPUs in the multiple GPU system to demon-
strate the necessity of the fine-grained memory interleaving as well. When an application runs
on the centralized GPU, as in traditional GPU systems, it is desirable that the memory objects it
accesses are distributed across multiple memories to achieve maximum memory bandwidth utiliza-
tion by distributing concurrent accesses across all available memory interfaces. Figure 14 shows
the performance of the GPU with memories interleaved at different granularities. FGP-Only and
CGP-Only indicate the use of fine-grained interleaved memory and coarse-grained interleaved
memory, respectively. Our evaluation results show that FGP-Only outperforms the CGP-Only by
1.48× due to better memory bandwidth utilization.

6Please note that this experiment is intended to show the necessity of having hardware that provides the ability to map an

entire page to a single GPU, not to compare the performance of the baseline configuration (FGP-Only) and CODA, although

it can be easily expected that CODA would perform as well as CGP-Only.
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Fig. 14. Performance impact of interleaving granularity.

Fig. 15. Performance impact of an affinity-based work scheduling mechanism.

6.7 Impact of Affinity-Based Scheduling

Thread blocks cannot be scheduled to any SM with our affinity-based work scheduling mecha-
nism. In this section, we evaluate the performance impact of the affinity-based work scheduling
mechanism. Figure 15 compares the performance of the affinity-based work scheduling mechanism
(FGP-Only + Affinity-based Work Schedule) and that of the baseline (FGP-Only). All our evaluated
benchmarks are virtually unaffected by the restricted scheduling mechanism, as expected, except
for one benchmark, SAD. The reason why the performance of SAD is degraded by the affinity-
based work scheduling is that the number of thread blocks is relatively small (61) considering
the number of GPUs and available SMs (16). Maintaining load balancing across all available com-
pute resources might be more crucial than carefully co-locating thread blocks and the data they
access, when compute resource bounds the overall performance. This problem can be alleviated
with resource-monitoring-based schemes.

7 DISCUSSIONS

7.1 Complex Address Mapping

So far, we have assumed a simple address mapping scheme for ease of explanation. Modern pro-
cessors, however, use more complex address mapping schemes such as XORing multiple bits (not
necessarily consecutive) for channel selection [46]. In this section, we discuss the applicability of
our dual-mode address mapping mechanism in such systems. Note that computation and data co-
location algorithm presented in Section 4.3 is orthogonal to the address mapping scheme used in
the underlying system. Although the detailed address mapping scheme differs for different archi-
tectures, the mappings can be classified into those that use the channel-selection bits exclusively
(i.e., they are not used as part of the row- or column-selection) and those that do not (i.e., at least one
bit from the channel-selection bits is used as part of the row- or column-selection). Our dual-mode
address mapping mechanism can be easily extended to support a system with the former class of
mappings, where channel-selection bits are used exclusively, by swapping the channel-selection
bits with other higher order bits after XOR operation. However, it is not trivial to support a system
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with the latter class of mappings, where channel-selection bits are not exclusively used. One way
might be to identify which bits are used exclusively for the channel-selection and which bits
are not, and then carefully swapping the channel-selection bits with those that are not used for
channel-selection. This requires further investigation and is a part of our future work.

7.2 Large Page and Memory Management

Large pages have been used to mitigate address translation overheads by reducing the number
of PTEs to maintain and increasing TLB hit rates. However, it comes at a cost, such as internal
fragmentation, memory bloat, and increased load-to-use latency [6]. In this section, we discuss
the applicability of our dual-mode address mapping mechanism for the large pages. Again, the
computation and data co-location algorithm presented in Section 4.3 is orthogonal to the page
size. First, our dual-mode address mapping can be easily extended for the large pages. For 2MB
pages, for example, address bits [22:21] can be used (instead of address bits [13:12] in the case of
4KB page) to index GPUs to allocate the entire page in a single GPU. However, the key challenge
in supporting large page is not about choosing which bits to use for GPU selection but about
dealing with fragmentation issues. Although our mechanism may complicate page management
and potentially increase fragmentation issues, we believe that if page-groups are small (e.g., four or
eight pages), this is likely to not be significantly more complicated than normal page management.
Also, the memory manager can be modified to deal with page-groups for most operations (e.g.,
flushing out to disk) for better memory management. This requires further exploration and is a
part of our future work.

7.3 PTE Extension

Our proposed mechanism requires a modification to the PTE format. X86 ISA reserves 3 bits [11:9]
for future usage [23], so we can use one of the bits to indicate the granularity information. When
a system employs large pages, extra bits are available in the PTE, which gives more freedom to
modify PTE contents.

7.4 NUMA or NUCA Systems

In this section, we discuss the difference and uniqueness of our system from the conventional
NUMA [8] or NUCA (Non-Uniform Cache Access) [21] systems in CPUs. First, in NUMA systems,
memory policies such as node-local or interleave can be specified and (relatively) easily controlled.
For example, the first-touch based page allocation has already been used in NUMA systems. On
the contrary, the first-touch based page allocation cannot be used in GPU systems (GPUs prior to
NVIDIA Pascal architecture [41]) due to the lack of first-touch information (recall that data struc-
tures are allocated and initialized by the CPU before kernel invocation). Even if the first-touch
information were available, a memory page could not be allocated in a single GPU without hard-
ware support for the localization. Furthermore, since shared data across multiple cores are often
cached in the CPUs, the penalty of NUMA is often reduced. However, in GPUs, the cache size
is much smaller than CPUs, so caches cannot hide the penalty of NUMA easily. Second, NUCA
systems (e.g., R-NUCA [21]) rely on data migration after an access pattern is identified. The mi-
gration overhead is much smaller in NUCA systems than in our multiple GPU system, because the
former migrates data within a single device (e.g., a tiled L2 cache architecture), whereas the latter
migrates data across multiple devices connected via comparatively low-bandwidth, high-latency
interconnect links.
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8 RELATED WORK

Multiple GPUs. Static-time data allocation has also been researched in the context of multiple
GPUs. A system with multiple GPUs is closer to an MPI-based system, since each GPU has its
own memory and physical address space is not interleaved across multiple GPU memories. In
this sense, several algorithms were proposed to automatically partition data among multiple de-
vices (e.g., multiple GPUs or CPUs and GPUs) [7, 16, 28, 30, 31, 33, 50]. The focus of our work is
to enable data partitioning among GPU memories via selective use of coarse-grained interleav-
ing (hardware mechanism) and to enable co-location of computations with the data they access
(software mechanism). Ziabari et al. [61] have proposed a mechanism that supports seamless data
transfer across all the devices (a CPU and one or more GPUs) in the system, while creating a hierar-
chical view between the memory of the GPUs and the host memory. Kim et al. [26] have proposed
a GPU memory network to simplify data sharing between discrete GPUs. Arunkumar et al. [4]
have demonstrated that package-level integration of multiple GPU modules (GPMs) can enable
continuous performance scaling and proposed a technique to improve GPM data locality and min-
imize the sensitivity on inter-GPM bandwidth. They used the Pascal and later architectures where
unified memory and demand paging are supported, in which when a page is first accessed in a
kernel, a page fault is detected, and the page fault handling procedure is performed. Realizing the
first-touch based allocation on those architectures is not revolutionary, since it can be done by
modifying GPU driver where page allocation is performed. However, it requires applications to
use unified memory in the first place, which indicates that traditional GPU applications, in which
CPU allocates data and GPU consumes or processes it after kernel(s) are launched, cannot gain the
benefit of the mechanism as is. However, our mechanism, which does not require any application
modifications, can support any applications for better compute and data co-placement.

Memory-Level Parallelism. Zurawski et al. [62] presented an address bit swapping scheme
to increase memory-level parallelism by reducing the row buffer conflicts in traditional DRAM
systems, which is used in AlphaStation 600 5-series workstations. Zhang et al. [59] proposed a
permutation-based page interleaving scheme to reduce row-buffer conflicts and to exploit data
access locality in the row-buffer. Ghasempour et al. [14] proposed a hardware mechanism to dy-
namically change the address mapping to increase bank-level parallelism at the cost of a significant
amount of page migration overhead. While our proposed mechanism also uses address bit swap-
ping scheme, it is different from these works in two ways. First, our mechanism applies address
mapping scheme at a page granularity such that pages with different address mappings co-exist in
the same memory space. Our mechanism is lightweight in a sense that it incurs negligible perfor-
mance overhead and does not have any impact on the cache coherence protocol or virtual address
translation. Second, our mechanism does not require large-scale page migrations; only a few (e.g.,
four or eight, depending on the number of memory stacks) pages are affected, since we selectively
use CGP at the page-group granularity.

Static-time Data Alignment. Static-time data allocation has a long history of research. High
Performance Fortran (HPF) provides compiler directives to specify data alignment among pro-
cessors [51]. Although our mechanism shares the same philosophy with the HPF directives such
as block or cyclic, they are different in the sense that the HPF directives are applied at virtual
address space, whereas it is done in the physical memory space in our mechanism, since the
source of non-uniformity of memory access pattern is caused when a virtual page is mapped to the
physical memory domain. Sung et al. [55] presented a formulation and language extension that
enables automatic data layout transformation for structured grid codes in CUDA. It distributes
concurrent memory requests evenly to DRAM channels and banks, thereby achieving significant
speedup. Thanh-Hoang et al. [56] recently proposed an architectural solution called Data Layout
Transformation (DLT) for optimizing data movement across system components. While their
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accelerator can make good use of memory bandwidth for data movement, it requires applica-
tion changes to use their instructions. Our mechanism, however, does not require any application
modifications and provides high data locality with slight changes in virtual to physical address
mapping.

Processing in memory. Processing in memory was proposed decades ago [11, 12, 15, 20, 24,
34, 43–45]. Recent advances in 3D stacking technology have given a boost to PIM research [1–
3, 10, 17–19, 22, 35, 36, 38, 57, 58] to accelerate workloads in various domains (e.g., large-scale
graph processing workloads [1, 35], Map-Reduce workloads [49], and HPC applications [57]). Akin
et al. [3] proposed solutions for efficient data reorganization, combining a DRAM-aware reshape
accelerator integrated within 3D-stacked DRAM, and a mathematical framework that is used to
represent and optimize the reorganization operations. Hsieh et al. [22] (TOM) addressed the issue
of local and remote memory accesses in a system with multiple PIM memory stacks. It performs
runtime profiling to learn best address mapping for data accessed by offloading candidates and
distributes that data with the discovered mapping. Although our work focus is on a system with
multiple GPUs, it is worth comparing our mechanism against theirs in the context of a system
with distributed GPUs, irrespective of whether they are multiple full-fledged GPUs or GPUs in
memory stacks. In contrast to our proposal, this work (1) essentially delays and decelerates the
regular kernel execution, because it tests all different address mappings (10 mappings, sweeping
from bit position 7 to bit position 16) for all the data accessed by offloading candidates during the
runtime learning phase, and (2) implicitly assumes a hardware mechanism to distribute data with
different mappings.

9 CONCLUSION

We introduce CODA that enables co-location of compute and data in a system with multiple GPUs.
Our mechanism is built on the key observation that code and data alignment is one of the most
important factors in achieving high performance in multiple GPU systems. The key idea of CODA
is to identify exclusively accessed data and place the data along with the thread block that accesses
it in the same GPU. For identification, we implement a compile-time analysis pass on the LLVM
infrastructure and estimate runtime constant stride between thread blocks. We also employ fine-
grained interleaved memory for the data that is shared by all thread blocks. For coarse-grained
data placement on top of fine-grained interleaved memory, we make lightweight changes to the
virtual to physical address mapping (not the physical address itself), such that both fine-grained
and coarse-grained interleaved pages can co-exist while not affecting the cache coherence protocol
or virtual address translation. For data-aware thread block scheduling, we use an affinity-based
scheduling policy. We have shown that CODA improves performance by 31% and reduces 38%
remote traffic over a baseline across a wide range of workloads.
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