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Introduction
Drones are everywhere today. Drone help everyone from
researchers to videographers to emergency services [1,2].
With this high demand for drones, a new market seg-
ment has opened up for high efficiency and high per-
formance drones [3]. However, with the present archi-
tectures, drones still lack the ability to carry out on-
the-fly transitions into different roles. For example, a
drone used by geological researchers cannot be used by
a police department. This is because those drones are
incapable of transitioning out of their use case while still
executing a flight mission.

There are vast and different use cases each individ-
ual organization has for a drone. This fact has made it
almost imperative that a general purpose drone system
architecture and accompanying flight stack be devel-
oped. The need for a fully autonomous drone capable
of decision making and also having the ability to change
its own firmware, mid-flight, is crucial. Additionally,
the design should be flexible and powerful enough, so
that it can be adapted in several use cases. To this end,
we present a prototype of an open source drone which
is controlled by a Raspberry-Pi-based flight controller,
as shown in Figure 1a. Please see our demo here.

Objectives
The objective of our project is to integrate cognitive
functions into a drone controlled by a Raspberry Pi with
the backing of the Navio2 [4] hat, a general purpose
drone controller shown in Figure 1b, to control flight
functionality. Using this setup, we program a drone to
run advanced waypoint navigation algorithms and au-
tonomously execute certain actions based on the results
of the algorithms. The drone is able to automatically
choose an algorithm to execute. The drone has a total
cost of $500 and has the ability to carry 200 g payloads
or additional equipment.

Analysis of Drone Architecture
The drone architecture is split up into four main layers,
as illustrated in Figure 2.

Cognitive Functions
The cognitive functions layer consists of the high level
and low level APIs which can be used by a developer
to write custom code and custom firmware. Then, the
custom firmware is converted to a Linux service and run
on the Pi in the background while further coding and
development occurs with the help of an IDE. To achieve
this, we utilized the DroneKit[5] C++ and Python APIs
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Figure 1: (a) Raspberry-Pi-Based Drone. (b)
The Top view of flight controller[4].

which were modified for our use case to allow the drone
to be re-configured mid flight.

Modified Linux Kernel
The Linux Kernel is modified to support the RT-Preempt
patch which enables the Linux operating system to be-
come suitable for robotics. This also gives the added
benefit of being able to completely shut down an in-
stance of a drone mission and spool up a new mission
while the drone is executing the current mission. This
ability is truly unique and opens up the field of general
purpose drones to the mass consumer and industrial
markets. The Linux kernel was also modified to support
continuous loop-back and server instances so that the
drone could be controlled using multiple devices such as
through 915 Mhz telemetry or a laptop through SSH.

Flight Controller
The flight controller used for this prototype is the Navio2
open-source controller developed by Emlid. This con-
troller is a HAT for the Raspberry Pi and interfaces
with the Pi using the GPIO pins. The Navio2 is pre-
configured with GLONASS and GPS abilities and comes
equipped with multiple IMUs to support guided naviga-
tion. The flight controller is the interface between the
Linux kernel and the hardware devices of the drone.
The Raspberry Pi sends electrical pulses to the flight
controller which is decoded by the controller. The con-
troller then translates the decoded instructions into PWM
signals and then outputs signals to the four motors.

Figure 2: High Level Drone Architecture

https://www.youtube.com/watch?v=3EmQX5hJeWg


Hardware Control Surfaces
The hardware on the drone mostly consisted of sensors
and four motors. The physics of the rotational direc-
tion of opposite-pairs of propellers allows the drone to
make varied movements in 3D space by only changing
the PWM output to the motors. This simple design de-
creases the processing burden on the Pi and allows us
to use the Pi for other activities such as flight control
algorithms or high level machine learning algorithms.

Capabilities
The drone is capable of full manual and autonomous
flight. We pre-configured the drone with the follow-
ing flight modes. Stabilize: In this configuration, the
drone automatically carries out wind correction. How-
ever, altitude and heading is controlled manually through
the RC transmitter. Loiter: In this configuration, the
drone is able to maintain its relative position (x,y,z)
in 3D space and carries out wind correction. Guided:
This configuration is the one used for autonomous fly-
ing. The drone uses a server running on the localhost
loop-back UDP port where we can send commands to
the drone flight control stack. The drone, in this mode,
monitors all parameters and controls every action.

Our current setup is basic, yet powerful. We are
able to configure the drone for waypoint navigation and
switch to automatic GPS navigation mid flight without
any loss of flight control. This also enables us to switch
out the firmware completely, shut down the firmware in
case of unexpected errors, and resume manual control
all without any loss of altitude. The following steps are
executed to perform a firmware switch.
(1) If the compiled firmware is not present, the firmware
files are compiled using the waf build file and gcc com-
piler. (2) The compiled firmware is then loaded into
the swap memory of the Pi. (3) The already-executing
firmware is given the command to load a custom boot
file into memory and load a mission-hold file. (4) The
Linux daemon is configured to read the new boot file on
reboot. (5) The executing firmware is instructed to exit
and write log files. (6) As soon as the firmware quits,
the daemon reloads and restarts. (7) While the daemon
is restarting, the drone is executing the mission-hold file
to maintain heading and altitude. (8) As soon as the
daemon restarts, the new boot file spools up the new
firmware with the aforementioned log files, and a new
mission can start executing.

In any stage mentioned above, if any step fails to cor-
rectly execute, the drone flies back to a pre-configured
location. However, if the flight-control stack faces an
error, the entire service and firmware is preempted and
manual flying control is handed to the pilot in com-
mand. As demonstrated, the drone has multiple redun-
dant systems to ensure safe flight.

Design choices and reasoning
The main reasons for using the aforementioned setup
revolve around the basic objectives that our drone is
trying to accomplish which is a drone that can be used
for multiple purposes and be configured for a differ-

ent purpose mid flight. The use of Linux in robotics
and flight control was for a long time highly debated
as Linux did not have an ability to be fast enough in
preempting a service on demand and context switching
with low overhead as in robotics applications a constant
output is needed to ensure stability and correctness of
the application. However, with the RT-Preempt patch,
we are able to utilize the full functionality of the Linux
kernel while also being able to utilize it for controlling
the drone’s functions and parameters in real time. Our
choice of flight controller was due to the fact that the
Navio2 is open-source and easily configurable for differ-
ent applications. The Navio2 also let’s the developer
directly manipulate any parameter which is accessible
by the Pi therefore granting complete access to all con-
trol surfaces and systems.

Performance
To analyze performance, we used the Linux perf com-
mand and htop tool [6]. We logged how many threads
the firmware had instantiated and how much CPU time
the processes got. We used this information to further
optimize the firmware so that we could have more pro-
cessing power available for algorithms such as Dijkstra’s
and Menger’s Dual. To achieve this, several other fea-
tures of the Linux kernel were deactivated and the win-
dow manager system was removed to have a command-
line interface only. The additional power consumption
of the Navio2 HAT on the Pi was found to be negli-
gible and this meant that both the Pi and the Navio2
could be powered from a 3S battery which also powered
the drone motors. The performance analysis is still an
ongoing part of the project and and additional data to
gather before any conclusions become solidified.

Future Work
We aim to continue more research into optimizing the
drone flight-stack and Linux kernel to enable more high
performance computing with our end goal being to test
the drone in a real-life scenario with deep learning work-
loads [7,8]. We are building a baseline model for a gen-
eral purpose drone capable of switching between firmware
versions and changing missions mid-flight.
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