

Towards a General-Purpose Cognitive Drone

Sam Jijina Adriana Amyette Ramyad Hadidi Hyesoon Kim Georgia Institute of Technology

Motivation

- Commercial drone industry will reach 805,000 in sales in 2021, a CAGR of 51% ^[1]
- Increasing use cases of drones
 from surveying land to emergency
 services and national security
- Open-source flight stack to
 promote innovation through
 collaboration
- Characterizing underlying architecture and flight stack to achieve high reliability, safety, and performance

Intelligence, Business Insider. "Commercial Unmanned Aerial Vehicle (UAV) Market Analysis – Industry Trends, Forecasts and Companies." Business Insider, Business Insider, 10 Feb. 2020, www.businessinsider.com/commercial-uav-market-analysis.

Applications of Drone Technology

- Aerial photography
- Agriculture
- Defense
- Emergency services
- Geographic mapping
- Personal hobby
- Search and rescue
- Shipping

and many more...

Current Drone Technologies

- DJI Commercial Drones ^[5]
 - Matrice Series (customizable and weight carrying configuration)
- DJI Personal Drones ^[7]
 - ≻ Spark
 - Mavic Series
- Parrot Personal Drones [8]
- □ Amazon Delivery Drones ^[6]
- SkyDio Series ^[9]
 - These drones are specialised for tracking moving objects
 - > They heavily rely on Computer Vision and Localisation utilities
- Boeing and Lockheed Martin ^{[10], [11]}
 - Drones are oriented more towards defense sector
 - High Altitude Long Endurance (HALE)
 - ➤ Stalker XE UAS

Current Technological Shortcomings

- Most drone flight stacks are not open-source
- No access to the autopilot code base
- Weight carrying capacity limitations
- Very difficult to alter hardware due to custom PCBs
- Not cost effective for various types of research projects

Design Choices

- Open-source drones already exist
 - ➤ CrazyFlie ^[12]
 - ➢ PlutoX ^[13]

□ BUT...

- Limited weight carrying capacity
- Limited flight time due to battery capacity
- Microcontroller performance limitation
- We set up a development platform to allow for more sensors and devices to be added in the future
 - ➤ Camera for SLAM ^[14] or OpenCV ^[15]
 - ≻ LIDAR
- So we decided to use a frame kit

to build a custom drone

Build Process

Steps:

Component collection and compatibility validation

- Motor specification calculations
 - Dependent on aggregate weight
 - Weight carrying capacity
 - Motor power calculations
- Choose flight controller
 - ➢ Pixhawk 4 ^[17], Navio2 ^[16], Pixhawk Pro ^[17]
 - Based on drone purpose
 - ▹ Cost analysis
 - Performance criteria
 - We needed a low latency flight controller which would work with an on-board computer (Raspberry Pi) ^[18]

Architecture of Drone Flight Stack

Hardware Overview

- Raspberry Pi 3 Model B +
- Emlid Navio2 HAT for Pi
- ESCs (Electronic Speed Control)
- 935KV motors
- GPS/GLONASS receiver
- a 3000 mAh 3S LiPo battery
- 915 MHz Ground-to-Air
 Telemetry communication
- Features of Navio2:
 - ≻ DualIMU
 - Triple redundant power supply
 - High resolution barometer

Navio2 HAT Setup

Flight Controller - GCS

- □ Two types of software:
 - Ground Control Station
 - Autopilot firmware
- □ Ground Control Station (GCS)
 - Executes from laptop
 - Real-time data (altitude, speed, location, battery)
 - ➤ Telemetry communication
 - Remote commands to override erroneous behavior
- Most popular GCS is MissionPlanner ^[20]
 - ▹ Open-source
 - Actively maintained

FLIGHT D	ATA FLIGHT PL	FLIGHT PLAN INITIAL SETUP CONFIGITUNING SMULATION TERMINAL HELP DONATE COM3 115200										-	CONNECT					
			2		~	č		·		0	X							
Distance Prev: 522 Home: 46	0.7989 km .46 m AZ: 67 2.94 m	1	1			2	-	1					To be		Sec. 1	Zoom	Action GE0 •	>> -35.040907 117.832747 11.40
		War C. C. S. C.			3	4		Hom	e					La LA T			Grid GoogleSat Status: loa Load V Save V	View KML eliteMay ded tiles VP File VP File
Wayp	ger Map di sono oints		1	NIC 8		anenae										*	Write Home L Lat -3 Long 11	wPs ocation 5.04173272 17.8277683;
2 100 Ak Wam 20 Ak														Alt (abs) 38	<u>1</u>			
	Command					Lat	Long	At	Delete	Up	Down	Grad %	Dist	AZ				
1	WAYPOINT	• 0	0	0	0	-35.0407928	117.8277898	100	X	0	0	95.7	104.5	1				
2	WAYPOINT	• 0	0	0	0	-35.0406786	117.8260410	100	X	0	Q	0.0	159.7	275				
3	WAYPOINT	v 0	0	0	0	-35.0417239	117.8251612	100	X	0	0	0.0	141.2	215				
4	WAYPOINT	→ 0	0	0	0	-35.0428395	117.8259873	100	X	D	Š	0.0	145.1	149				
▶ 5	WAYPOINT	- U	0	0	0	-35.0427165	117.8274572	100	X	Ð	Ŷ	0.0	134.5	84				

Flight Controller - Autopilot

ArduCopter (fork of ArduPilot) ^[21]

- Executes on board the drone
- Interfacing between
 hardware and flight code
- Autonomous flight capabilities
- Flight modes (Guided, Auto, Acro)
- Sensor polling and attribute actuation

Flight Controller - Other

- □ MAVLink ^[22]
 - Micro Air Vehicle Link
 - Data packet protocol which enables standardized communication between multiple drones
 - ➤ Issuing commands to a drone
- DroneKit API ^[23]
 - Python and C++ APIs to issue flight commands easily
 - Converts commands to MAVLink protocol
 - ➤ Enables use of Python AI libraries with drone

MICRO AIR VEHICLE COMMUNICATION PROTOCOL

Drone Operating System (1)

- Real Time Operating System (RTOS)
 - RTOSs are used in time critical applications
 - Popular in robotics
 - Minimal, if any, latency in response
 - ➤ Kernel tasks can be pre-empted
- Most fully supported RTOSs are not open-source
- We had the choice of using Linux ^[25] or Robot Operating System (ROS) ^[24]
 - ➢ ROS is a specialized OS for robotics
 - Due to the availability of community support and documentation, we decided to use Linux

Drone Operating System (2)

- Setting up Linux for drone hardware
 - Built Linux with PREEMPT_RT patch to achieve nearly identical performance to a RTOS
 - PREEMPT_RT patch alters kernel scheduler to preempt all processes
 - Interrupt handlers get converted to kernel threads
 - Kernel processes which spin-lock can be preempted
 - Unbounded latency solution
- Stability and customizability of Linux
- Open-source requirement
- Enable a UDP loopback port
 - > Used for incoming MAVLink packets

Firmware Switching

- Commercially available drones from Boeing, DJI, and SkyDio are capable of changing their missions mid-flight ^[26]
 - They are unable to completely shut down their autopilot binary and load a different one since access to their autopilot architecture is limited
- Achieving this ability would open up the field of general purpose drones to the mass consumer and industrial markets

Flight Testing Methods

- D Manual Flying and Testing
 - ➤ Weather dependent
 - ▹ Battery limitation
 - Approval Process
- Simulations
 - ➢ Software in the Loop (SITL)
 - ➤ Hardware in the Loop (HITL)
- SITL simulations used to test flight code
 - ArduCopter natively compiles for SITL simulation
 - Less system resource heavy
- D Microsoft AirSim ^[27] for HITL simulation
 - ▷ Open-source
 - System resource heavy
 - Provides environment simulation (neighborhood, city)

SITL Simulation

Video Removed Due to Space

Conclusion

Full autonomous flight

- ▹ Pre-programmed
- On-the-fly computation
- ➢ GPS ALT-Hold
- Waypoint navigation
- Switch firmware mid-flight
 - ➤ Useful for general-purpose dev. platform
 - Re-configure attributes on-the-fly
 - Lower maintenance downtime
- Al workloads
 - SLAM workloads in tandem to flight code
 - Path planning enabling drone to decide best approach

Future work

- Performance and Power Analysis
 - We will be presenting our findings at ISPASS 2020 poster session in April
 - Preliminary data suggests room for optimization gains
- Improve reaction time
- Improve flight time and range
- Execute additional secondary AI workloads in tandem
 - ▹ OpenCV
 - ▹ LIDAR
 - Collaborative missions
- ASIC feasibility assessment
 - Reduce overhead
 - Reduce barrier to entry to custom drone market

Thank You

References

- https://www.businessinsider.com/commercial-uav-market-analysis 1. https://medium.com/remote-sensing-in-agriculture/how-drone-technology-can-be-leveraged-in-agriculture-54b687c6dc45 (Slide 2) 2. https://www.steamboatpilot.com/news/the-sky-is-the-limit-routt-county-invests-in-drone-technology-for-law-enforcement-and-wildfires-as-legal-3. groups-worry-about-becoming-a-surveillance-society/ (Slide 2) http://blog.jammer-store.com/2012/05/police-of-victoria-australia-will-use-flying-spy-drones/ (Slide 2) 4. https://www.dii.com/matrice-200-series 5. https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011 6. https://store.dji.com/?gclid=Cj0KCQiA4sjyBRC5ARIsAEHsELFkQcKySwGljteaiXuFpDptFahOJOMxK9aHhbYcHsh5E-mlrKLn-zIaAmgSEALw wcB 7. 8. parrot.com skydio.com 9. 10. boeing.com/defense https://www.lockheedmartin.com/en-us/capabilities/autonomous-unmanned-systems.html 11. 12. bitcraze.io https://www.dronaaviation.com/plutox/ 13. 14. https://arxiv.org/abs/1502.00956 15. opency.org emlid.com/navio2 16. 17. pixhawk.org raspberrypi.org 18. https://docs.emlid.com/navio2/ardupilot/typical-setup-schemes/(Slide 10) 19. ardupilot.org/planner 20. ardupilot.org/copter 21. 22. mavlink.io 23. dronekit.io 24. ros.org 25. linux.org 26. https://dl.djicdn.com/downloads/inspire 1/en/Firmware Update Guide en v1.4.pdf
- 27. https://github.com/microsoft/AirSim
- 28. https://www.support.com/how-to/how-to-use-the-camera-for-a-dji-spark-drone-11760
- 29. https://www.amazon.com/gp/product/B00N3I9GM4/ref=ppx_yo_dt_b_asin_title_o05_s01?ie=UTF8&psc=1
- 30. https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk3_pro.html
- 31. https://tipsfordrones.com/can-drones-fly-in-rain/

