
4950 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 6, JUNE 2020

Toward Collaborative Inferencing of Deep Neural
Networks on Internet-of-Things Devices
Ramyad Hadidi , Jiashen Cao , Michael S. Ryoo, and Hyesoon Kim, Member, IEEE

Abstract—Recent advancements in deep neural networks
(DNNs) have enabled us to solve traditionally challenging prob-
lems. To deploy a service based on DNNs, since DNNs are
compute intensive, consumers need to rely on compute resources
in the cloud. This approach, in addition to creating a dependency
on the high-quality network infrastructure and data centers,
raises new privacy concerns because of the sharing of private
data. These concerns and challenges limit the widespread use of
DNN-based applications, so many researchers and companies are
trying to optimize DNNs for fast in-the-edge execution. Executing
DNNs is further pushed to the edge with the widespread use
of embedded processors and ubiquitous wireless networks in
Internet-of-Things (IoT) devices. However, inadequate power and
computing resources of edge devices, along with the small number
of local requests, limit the use of prevalent optimization tech-
niques such as batch processing. In this article, we enable the
utilization of the aggregated computing power of several IoT
devices by creating a local collaborative network for a subset of
DNNs, visual-based applications. In this approach, IoT devices
cooperate to conduct single-batch inferencing in real time while
exploiting several new model-parallelism methods, which will be
introduced in this article. Our approach enhances the collabo-
rative system by creating a balanced and distributed processing
pipeline while adjusting the tasks in real time. For experiments,
we deploy a system with up to 10 Raspberry Pis and exe-
cute state-of-the-art visual models, such as AlexNet, VGG16,
Xception, and C3D.

Index Terms—Computer vision, distributed system, edge com-
puting, Internet of Things (IoT), real-time system.

I. INTRODUCTION AND MOTIVATION

DEEP and convolution neural networks (DNNs/CNNs)
have shown extraordinary power in understanding large-

scale data that are massively diverse and complex in sev-
eral applications, such as computer vision and video recog-
nition [1]. DNN-based applications are extensively being
researched and applied to our daily lives. Because of their
proximity to the data, conventional consumer-level devices,
such as Internet-of-Things (IoT) devices, are a great candi-
date for the in-the-edge inferencing of DNNs [2]. However,

Manuscript received May 9, 2019; revised December 2, 2019; accepted
February 2, 2020. Date of publication February 6, 2020; date of current version
June 12, 2020. This work was supported by NSF under Grant CNS 1815047
and Grant CNS 1814985. (Corresponding author: Ramyad Hadidi.)

Ramyad Hadidi, Jiashen Cao, and Hyesoon Kim are with the School of
Computer Science, Georgia Institute of Technology, Atlanta, GA 30332 USA
(e-mail: rhadidi@gatech.edu; jcao62@gatech.edu; hyesoon@gatech.edu).

Michael S. Ryoo is with the Department of Computer Science, AI
Institute, Stony Brook University, Stony Brook, NY 11794 USA (e-mail:
mryoo@cs.stonybrook.edu).

Digital Object Identifier 10.1109/JIOT.2020.2972000

compared to high-performance computing (HPC) data cen-
ters, IoT devices lack the required performance to execute
DNNs [3], [4]. Nevertheless, in-the-edge inferencing of DNNs
is gaining ground because of the widespread availability of
IoT devices [5], affordability of embedded processors, and
ubiquitous wireless networks. In-the-edge execution is also not
dependent on cloud services and the high-quality networks [6],
[7] that are not accessible in several scenarios (e.g., drones).
Additionally, in-the-edge inferencing improves the privacy of
users since it does not rely on the privacy policy of companies
(e.g., offering smart home security cameras but requiring one
to upload 24/7 recordings; offering private photographs storage
but internally using the photographs as a training set). In this
article, we focus on an environment that already has several
IoT devices. Since not all devices are busy at one time, our
aim is to aggregate the computational power of these devices
to perform faster in-the-edge execution.

This article utilizes a local and distributed system of IoT
devices for performing the entire computation of DNNs for
CNN-based visual models with single-batch inferences. A
single IoT device alone cannot effectively handle the entire
computations of a DNN [8], [9]. Although with some opti-
mizations, such as weight pruning [10] and precision reduc-
tion [11], [12], we can run limited versions of the current
models on IoT devices [13] with the advancement of DNNs
and the emergence of generalized models, the increase in
the demand of computing power for DNNs is not expected
to stop [14]. Therefore, exploring the efficient distribution
of DNN computations is essential. As discussed, since IoT
devices are a great candidate for DNN-based applications by
moving the computations of DNNs closer to the edge, we can
achieve the following: 1) reducing the dependence on cloud
resources and high-quality network infrastructure for scenarios
with limited Internet connectivity, such as drones and robots
in a disaster area; 2) improving the privacy of private data
since the data are not exposed outside the local network; and
3) providing an alternative solution to understand raw data
locally than the current de facto solution of offloading to the
cloud. Our discussions in this article focus on CNN-based
visual models that have several use cases in IoT applications,
such as video analytics and monitoring services.

In this article, we target CNN-based computer vision mod-
els and the computations of their layers, fully connected (fc)
and convolution (conv) layers. Although computer vision
models have been studied extensively for HPC machines,
compared to the cloud, their in-the-edge execution changes
important assumptions. First, since the requests are local and

 Author’s Unofficial Accepted Copy

https://orcid.org/0000-0002-8731-1084
https://orcid.org/0000-0002-0079-2146
Ramyad

HADIDI et al.: TOWARD COLLABORATIVE INFERENCING OF DNNs ON IoT DEVICES 4951

real-time performance is important, we might not have enough
data to process in parallel (i.e., no immediate data-level paral-
lelism). This means we cannot batch many requests to amortize
the expensive costs of memory operations. Second, besides
low computation power, IoT devices have significantly smaller
memories, compared to HPC machines. If the memory require-
ment of a small computation task is not satisfied, the execution
performance suffers considerably. Performance loss in such
situations occurs because the device uses off-chip storage as
swap memory. Third, by locally processing DNN computa-
tions, we avoid the high cost of offloading images/videos to
cloud servers, which requires high uploading bandwidth.

Our contributions in this article are as follows.
1) We introduce several model-parallelism techniques for

CNN-based DNN models, mainly used in computer
vision, to reduce the memory footprint per device and
divide their computations.

2) We generate, deploy, and monitor a balanced data-
processing pipeline that efficiently processes the com-
putations of DNNs. Our heuristic requires significantly
less profiling and exploration than the previous work [8].

3) We study prevalent CNN models, such as image recog-
nition (AlexNet [15], VGG16 [16], residual neural
network (ResNet) [17], and Xception [18]) and video
recognition (C3D [19]).

4) We propose a system in which collaborative and
resource-constrained IoT devices perform the single-
batch computation of DNNs in a distributed fash-
ion. We deploy an example of such a system on an
interconnected network of up to 10 Raspberry Pi 3s
(RPis) [20].

II. PRIOR WORK

Recently, with the prevalence of large DNN models,
distributing a single model has gained the attention of
researchers [8], [21]–[25]. Large models need more memory,
and when the memory requirement of a DNN model is larger
than the system’s memory, the performance of a model suf-
fers noticeably. More important, when executing DNNs on IoT
devices, compared with HPC machines, two important criteria
change: 1) we cannot batch several requests and make use of
data parallelism and 2) we do not have access to machines
with high memory capacities. This is why several released
tools try to the alleviate memory and computation footprint
of DNNs [4], such as ELL library [26], Tensorflow Lite [27],
and TensorRT [28]. With the increasing importance of privacy,
several companies have released specialized hardware for the
edge, such as edgeTPU [29] and JetsonNano [30]. Besides
these endeavors, designing efficient (in terms of memory
and computation footprints) DNN models is also an ongoing
effort [31], [32]. Our methods are orthogonal to these tech-
niques since our aim is to distribute the computation of DNNs.
In fact, such techniques are applicable to our distributed
system to accelerate the execution even further.

We extend our previous work [23], in which several
robots collaborate to perform distributed DNN computations,
with new model-parallelism methods and a faster heuristic.

Compared to the previous work that introduced one model-
parallelism method for fc layers, we introduce additional
methods for conv. Additionally, we study the characteris-
tics of these methods. Although we provided an algorithm
to distribute the tasks in [23], we find that our new heuris-
tics with online monitoring tools significantly shorten the time
to find the same near-optimal distribution. This is because
the previous algorithm needs access to the entire profiled
data, which takes a long time to gather and does not always
cover all cases. On the other hand, the new heuristics shorten
the exploration time by reducing possible cases using online
monitoring tools. We use our previous work to implement
the same dynamic allocation of tasks during execution with
IP table files. (Refer to [23] for a detailed explanation.)
Neurosurgeon [24] statically partitions a DNN model between
a single edge device and the cloud. The partitioning is always
between the cloud and only one edge device. DDNN [22]
also tries to partition the model between the edge devices and
cloud, but model retraining is necessary for each setting. In
DDNN, sensor devices perform only the first few layers in the
network, and the rest of the computation is offloaded to the
cloud.

Another general direction is to reduce the overhead of
DNNs using techniques, such as weight pruning [10], [33],
resource partitioning [34], [35], quantization and low-precision
inference [11], [12], [36], [37], binarizing weights [38]–[40],
and designing specific models for mobile phones [31], [32].
Although these techniques reduce the overhead of DNNs,
they require several additional steps that decrease the accu-
racy and enforce retraining of the model. This article could
be applied on top of these techniques to increase the final
performance as well. In summary, the following are the main
differences of this article compared to the previous studies:
1) we study resource-constrained and IoT devices with lim-
ited memory space; 2) we increase the real-time performance
of single-batch DNN inferencing; and 3) we introduce several
model-parallelism methods for conv.

III. BACKGROUND

A. Layers Overview

Fully Connected Layer: In a dense or fc layer, the value
of each output element, or activation, is calculated from the
weighted sum of all inputs as aj = ∑

i xiwij + bj, in which
i is the input, j is the output number, inputs are denoted as
xi, weights as wij, bj as biases, and aj as activations. This
formula may also be written using matrix notations as a =
Wx + b. W and b are defined during training and are fixed
during inferencing.
conv: In computer vision models, usually all the layers

except the last ones are conv. A conv applies a set of filters
to a subset of inputs by sweeping each filter (i.e., kernel) over
them. Each filter creates a channel, or depth (i.e., z-axis), of
the output (Fig. 1). The spatial dimensions (i.e., x-axis and
y-axis) of the output are defined by four parameters: 1) the
size of input; 2) filter; 3) stride; and 4) padding. In this arti-
cle, we use the same padding, which means the output size
of a conv is same as the input size. In other cases, one can

4952 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 6, JUNE 2020

Fig. 1. conv—the computations consist of several filters, each of which
creates a channel in the output.

Fig. 2. AlexNet—architecture of the AlexNet image-recognition model [15].

Fig. 3. VGG16—architecture of the VGG16 image-recognition model [16].

simply replace the output dimensions with the appropriate for-
mulas. Similarly, we can extend these concepts to larger input
dimensions.

Other Layers: To introduce nonlinearity, an activation layer
(ϕ), such as ReLU, is applied on the output to create the
input to the next layer, or hj = ϕ(aj). This allows a model
to learn complex functions. In addition, often a pooling layer
downsamples the data and reduces the dimensions, such as a
max-pooling (maxpool) layer. These layers, compared to
fc and conv layers, are much less compute intensive, so we
group them with their corresponding parent layer.

B. Models Overview

AlexNet: In the 2012 ImageNet large-scale visual recogni-
tion challenge (ILSVRC), AlexNet [15] significantly outper-
formed all the prior competitors. Fig. 2 illustrates the model
of a single-stream AlexNet, which consists of five conv and
three fc layers.

VGG16: Fig. 3 depicts the VGG16 model [16], which has
a total of 16 layers: 13 convolution and 3 fc layers. As seen,
VGG16 has a structured model; deeper conv has more filters
and smaller spatial dimensions.

ResNet: The ResNet [17] introduced “skip connection” for
training deeper networks in 2016. In this article, we used
ResNet50 with 50 layers (Fig. 4). Additionally, Fig. 5(a) illus-
trates the basic blocks for ResNet that are used in Fig. 4. This
model is residual in the sense that shortcut connections skip
some blocks, which makes training easier for deep models.

Xception: The Xception [18] model is based on Inception
V3 [41]. The Xception module independently processes the
correlations in cross-channel and spatial features. Therefore,
Xception introduces a special convolution unit, shown in

Fig. 4. ResNet50—architecture of the ResNet50 image-recognition
model [17].

(a) (b)

Fig. 5. ResNet50 and Xception blocks. (a) ResNet50 bottleneck block with
a skip connection [17]. (b) Xception separable convolution block [18].

Fig. 6. Xception—architecture of the Xception image-recognition model [18].

Fig. 7. C3D—architecture of the C3D action-recognition model [19].

Fig. 5(b), the separable convolution unit that decouples the
mapping of cross-channel and spatial features. Separable con-
volution first performs cross-channel (i.e., depth-wise) convo-
lution over input channels, and then performs an independent
spatial convolution on each of the outputs. Fig. 6 shows the
Xception model with 34 separable conv.

C3D: The C3D [19] model is designed to process videos and
has been used in action recognition and scene classification
tasks. To learn spatiotemporal features, the C3D model uses
3-D convolutions, which produce an output volume instead of
a 2-D output per filter. Compared to a conventional conv,
an additional sweep along the z-axis creates a volume in the
output. Fig. 7 shows the C3D model, which consists of eight
3-D conv.

IV. PARALLELIZING AND DISTRIBUTING

INFERENCE METHODS

In this section, we present our methods for distributing and
parallelizing the computations of single-batch inferencing in
fc and conv. We examine two general directions: 1) data
and 2) model parallelism. In data parallelism, the presence
of many requests at the same time enables us to increase
the number of inferences per second (IPS) by independently
serving each inference separately on each device. In model

HADIDI et al.: TOWARD COLLABORATIVE INFERENCING OF DNNs ON IoT DEVICES 4953

TABLE I
CHARACTERISTICS OF MODEL PARALLELISM METHODS FOR FC LAYERS FOR A LAYER OF

INPUT DIMENSION di , OUTPUT DIMENSION do , AND NUMBER OF DEVICES n

parallelism, which is applicable to the computations required
for a single input, the inference computations are distributed
and parallelized over multiple devices. Data parallelism is real-
ized because of batch processing and grouping several requests
together. However, as discussed, IoT devices serve a lim-
ited number of requests. Moreover, these devices have limited
memory to process the entire computation of an input in a
tight schedule. Therefore, using only data parallelism might
not be applicable to all situations in the edge.

To apply both model and data parallelism, we first divide
a DNN model on multiple devices by layers (or a group of
layers) and create a processing pipeline. These layers pro-
cess the input sequentially, and the output of each layer is
dependent on the output of its previous layer(s). Thus, we
must correctly maintain the dependence between layers. By
utilizing this processing pipeline, we can increase the through-
put of computation, while the latency for each computation
remains the same. In this article, we improve the performance
further by applying model parallelism on top of this process-
ing pipeline to parallelize the computation of the bottleneck
layers.

Data parallelism was already introduced in [8] and [23]
for fc and conv for DNN models. But, applying only data
parallelism would not always work for resource-constrained
and IoT devices. This is because data parallelism duplicates
the same amount of computations on another device. Since
computations are the same but on a different input data, the
memory and computation footprints are not reduced. In detail,
data parallelism alone cannot ensure high performance in IoT
devices because:

1) for large layers, just the duplication of devices does not
provide a performance benefit because the entire data are
not loaded to the memory. Thus, a device still pays a
high cost for accessing the off-chip storage (i.e., swap);

2) data parallelism needs a stream of input data, whereas
in several scenarios, the frequency of input data is low;

3) to create a balanced and efficient data-processing
pipeline in a distributed system, a balanced work assign-
ment is required.

However, data parallelism is not flexible in adjusting the
amount of computation per device. Model parallelism, on
the other hand, exploits intralayer independence of compu-
tations in DNNs to create fine-grained divisions of work.
Thus, it solves the mentioned shortcomings of data paral-
lelism. However, compared to the data parallelism, employing
such deeper level parallelism needs knowledge of how each
layer does its computations and how parallelism affects data

(a) (b)

Fig. 8. fc layer model parallelism—applying model parallelism methods on
a simple fc layer: (a) output splitting, in which each output is independently
calculated and (b) input splitting, in which partial outputs are calculated based
on a part of the input.

communication, computations, and aggregation. We endeavor
to address this knowledge gap in this article.

A. Model Parallelism for Fully Connected Layers

In an fc layer, since the computations of each activation
(aj) are independent of other activations, we can parallelize its
computations. We describe two methods specific to fc layers:
1) output and 2) input splitting, shown in Fig. 8(a) and (b),
respectively. In output splitting, we parallelize the computa-
tion of each activation while transmitting all input data to
each device. Fig. 8(a) highlights a device and its computa-
tions to derive its activation. Each device holds the weights
corresponding to its activations. Later, when the computations
of each device are done, we merge the results by concatenat-
ing values in the correct order. We can apply an activation
function either on each device or after the merging.

In input splitting, a device computes a partial part of all
the activations. Fig. 8(b) illustrates an example in which a
device computes half of the required multiplications for all the
activations. In this method, a part of the input is transmitted
to each device. Each device holds the weights corresponding
to its input split. Later, when the computation of each device
is finished, a merge operation adds all of the partial sums.
Contrary to the output-splitting method, we cannot apply an
activation function before the merge.

A more detailed summary of these methods is presented
in Table I. These methods trade communication with the
memory footprint. This is because each device holds part of
the weights but needs to transmit more variables. A more
detailed examination is shown in the table, where n is the
number of devices, and di and do are input and output dimen-
sions, respectively. As seen, both methods somehow divide
the memory footprint (i.e., saved weights) and the number of
multiplications. Input splitting slightly increases the number of
reductions because computing the partial sums is necessary on

4954 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 6, JUNE 2020

TABLE II
MODEL PARALLELISM METHODS FOR CONV (ASSUMING THE SAME PADDING)

Fig. 9. Model-parallelism methods performance—input and output splitting
performance on two RPis for fc layers.

each device. Furthermore, output- and input-splitting methods
have a communication overhead of (n − 1)di and (n − 1)do,
respectively. Depending on the size of the input and output,
we can find the most optimum choice based on our device and
communication.

As an example, in Fig. 9, we run a series of dense layers on
an RPi and their distributed versions on two RPis (in total four
devices, with an initial sender and a final receiver). We cover a
range of 512–16 384 in output sizes, and two input sizes, 7680
(not a power of two) and 8192 (a power of two). As seen, for
the input size of 7680 and large output sizes, we achieve super-
linear speedups. This is because in these cases, slow off-chip
storage (i.e., swap) is used. However, for the input of 8192,
the baseline DNN framework can optimize accesses and avoid
swap activities by tiling. The baseline DNN framework opti-
mizes the swap space accesses; however, it cannot always hide
such costs for the input size of 7680. Furthermore, if off-chip
storage activities are not occurring in the baseline case, as
seen, speedup values are less than the ideal value of two. This
is because each distribution has a communication cost associ-
ated with it. We examine these costs and their impact on our
distribution in Section V. Fig. 9 shows that the input-splitting
method has mostly lower performance than output splitting.
This is because the input-splitting method cannot apply acti-
vations locally. Therefore, input splitting cannot benefit from
a reduced number of values to transfer, compared to output
splitting. The reduction of values occurs because activation
functions (such as ReLU), set every negative value (or close to
zero values) to zero. Thus, in sum, fewer values are transferred
after activation.

B. Model Parallelism for Convolutional Layers

In a conv, each filter creates a channel in the output data.
As Fig. 1 illustrates, assume the dimensions of input, filters,
and output are Hi×Wi×Ci, Hf ×Wf ×Cf ×k, and Ho×Wo×Co,

Fig. 10. Convolution model parallelism I. (a) Channel-splitting output.
Spatial-splitting (b) input and (c) output.

respectively. The depth of the filters is defined by the depth
of the input, or Cf = Ci. Here, without loss of generality, we
assume square filters, Hf = Wf = f . The number of channels
in the output is defined by the number of filters, or Co = k.
Each filter contains Cif 2 weights that are set during training.
Per output element, each filter performs Cif 2 multiplications of
its weights and input values, and one reduction operation. So,
for k filters in a conv, per output element, we perform kCif 2

multiplications and k reductions. Therefore, the total number
of multiplications and reductions in a conv for all elements is

Multiplications: HoWokCif
2 Same Padding=======⇒ HiWikCif

2

Reductions: HoWok
Same Padding=======⇒ HiWik. (1)

For a single inference, the amount of communication is the
sum of the number of input and output elements, or (HiWiCi)+
(HiWik) = (Ci + k)(HiWi).

In the rest of this section, we describe our specific methods
of model parallelism for conv. Since each method has advan-
tages and disadvantages, Table II provides a detailed overview
of the discussions in this section.

Channel Splitting: In channel splitting, each device calcu-
lates a nonoverlapping set of channels in output. In other
words, each device processes only k′ filters that k′ ≤ k.
Fig. 10(a) shows an example output of this method with three
devices. Since k′ filter is processed per device, a total of �k/k′�
devices required. Each device needs not only its set of k′ fil-
ters but the entire input data. So, filter’s weights are divided
across devices, or k′Cif 2 per device. The total number of
multiplications and reductions remains the same, and each
device handles �k/k′�−1 part. In the end, when every device
is finished, their data are concatenated depthwise, which is in
O(k). For the output, the total number of output elements to be
transferred is HiWik. We have the option to apply the activation
function on each device or after the merging. In total, as shown
in Table II, communication overhead is (�k/k′�Ci − 1)HiWi,
since we need to transmit a copy of the input to all devices.

HADIDI et al.: TOWARD COLLABORATIVE INFERENCING OF DNNs ON IoT DEVICES 4955

TABLE III
COMPARISONS OF MODEL PARALLELISM METHODS FOR CONV

Fig. 11. Convolution model parallelism II. Illustration of (a) one filter
convolution and (b) its corresponding filter splitting.

Spatial Splitting: Spatial splitting splits the input spatially,
in the x-axis and y-axis. Assume that each split dimension is in
d parts, so there are a total of d2 parts,1 as shown in Fig. 10(b).
Each part of the input is transmitted to a device. Furthermore,
each region is extended for �f/2	 more overlapping elements
with neighboring parts, so that we can do convolution on the
borders. Therefore, the number of input data elements to be
transmitted per device is

⌈
1

d2

⌉

HiWiCi + 4�f/2	
(

d2 − d
)

(2)

in which the first term represents the split input, and the second
term represents the numbers of extra overlapping elements.
Compared to channel splitting in which a copy of input is
transmitted to all devices, spatial splitting only pays extra over-
head for the overlapping elements. Since each device processes
all filters and each needs a copy of all weights. Hence, the
total number of filter elements to be transmitted is d2kCif 2.
Note that this is a one-time cost for all inferences. The total
number of multiplications and reductions is the same in total
and each device processes only 1/d2. When the computation of
each device is finished, their output is concatenated spatially.
Similar to the previous method, the total number of output
elements to be transferred is HiWik. We have the option to
apply the activation function either on each device or after
the merging. As discussed, the communication overhead for
spatial splitting is only for overlapping parts, which approxi-
mately is 4d2�f/2	(d2−d). Since the filter size is usually small,
this overhead is not significant.

Filter Splitting: In filter splitting, both input and filter are
split channelwise in batches of size Cb. Fig. 11(a) illustrates
the base case in the convolution of one filter, which produces
a single channel in the output. Fig. 11(b) illustrates the same
filter divided into three parts with their corresponding input.
Since there is a one-to-one correspondence between input and
filter elements, each device computes a partial output. In the

1For simplicity, we divide each dimension to equal parts here. In our
implementations, any number of divisions is possible.

end, to create the final output, we sum all corresponding ele-
ments and apply the activation function. By denoting the input
channel size as Ci, we need a total of �Ci/Cb� devices. Since the
input is split channelwise, the total number of input element
transfers is without an overhead, or HiWiCi. Similarly, each
device saves only its dedicated channels of all filters, so the
memory footprint is also divided. But, since each device sends
a partial output to the merging device, there is an overhead
of (k�(Ci/Cb)� − 1)(HiWi) for transmitting output elements
compared to the baseline. To create the final output, we need
to perform k�(Ci/Cb)� reductions. The concatenation is in
O(Ci/Cb).

Methods Comparison: Table III presents a comparison of
the described methods. Channel splitting has an overhead of
copying the input, whereas filter splitting has to transmit partial
sums. The impact of these differences on the performance is
defined by the properties of a conv. As illustrated in Fig. 12,
we run a conv with the kernels 3 × 3, 5 × 5, and 9 × 9, filter
depths 128 and 512, and various input depths with 128 × 128
inputs. We distribute this layer on three RPis using the men-
tioned splitting methods (in total five devices, with an initial
sender and a final receiver). Speedups are relative to single-
device execution. We see that in the kernel 3×3 and filter depth
128, smaller input depths have no speedup. This is because
the amount of computation per device after the distribution is
small. However, for the large input depths, since the amount
of computation after the distribution is more balanced, we
see a speedup. Furthermore, in most cases, spatial splitting
performs better. This is because, contrary to other methods,
spatial splitting has less communication overhead. However,
for larger 9 × 9 kernels, since the number of overlapping ele-
ments increases, the advantage of spatial splitting compared
to other methods decreases.

V. WORK DISTRIBUTION

To understand why distributing and parallelizing DNN com-
putations are necessary for IoT devices, Fig. 13 shows the
memory usage and time to process an input (i.e., latency)
of some layers in C3D and VGG16. As seen, fc layers of
both models have an extremely large memory footprint that
causes long latency (in order of minutes, not shown). For fc
layers, this large memory footprint and low compute inten-
sity activate the use of swap space. This behavior is true
for almost all visual models since after extracting visual fea-
tures using conv, these models need to flatten the features
for classification. Such conversion from visual features to
categorical features, which are implemented with fc layers,

4956 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 6, JUNE 2020

Fig. 12. Convolution model-parallelism methods performance—performance comparisons of model-parallelism methods for conv distributed on three RPis.
Speedup is measured against a single RPi. As seen, depending on input depth, filter depth, and kernel size, the best distribution method varies.

Fig. 13. Per-layer memory and latency—memory usage and latency of some
layers in VGG16 and C3D models on an RPi during an inference.

Fig. 14. Model and data parallelism performance—speedup of model and
data parallelism for fc layers, normalized over single device, with different
sizes and input size of 7680 on two RPis [8].

causes high memory usage with low computational density.
Hadidi et al. [8] performed an experiment, the result of which
is shown in Fig. 14 that shows model parallelism has higher
performance benefit than data parallelism for these layers.
These results, with results in Fig. 9, show how distribution
achieves higher performance.

As discussed, applying model parallelism is necessary for
layers with a large memory footprint, such as first fc layers
[Fig. 13(a)], to bypass swap space usage. conv, on the other
hand, has a much smaller memory footprint; but with a few
layers on a device, we will eventually exceed the available
memory of the device and face the same issue. For conv,
it is also possible that the latency of a single layer is long
and not suitable for real-time processing because of its large
computation load. To this end, we present some examples in
Fig. 13 that show the latency of some convolution layers in
VGG16 and C3D models. As illustrated, even for a single
layer, the latencies are not suitable for real-time processing.
In addition, as shown in Fig. 12, we see that model parallelism
is able to provide us with a performance benefit. Therefore, in
contrast with the previous work [8], which has not analyzed
model-parallelism methods for conv, we found such model-
parallelism methods to be useful in DNN models.

Note that most DNN models have more than ten layers,
and until now, as examples, we have shown only the statistics
for single layers. The mentioned challenges are exacerbated
with more layers. In summary, the total latency of execut-
ing the entire model on a single device is longer because the

latencies of all layers are accumulated because there are no
parallelization opportunities. Model-parallelism methods help
us to solve these challenges because they reduce the memory
footprint and exploit more compute resources by introducing
parallelism among devices.

Model- and data-parallelism methods help us to distribute
and parallelize the DNN computations. But, how can we find a
near-optimal distribution for a given number of devices? The
distributed system that we study is essentially a processing
pipeline for the DNN model; each device processes a part of
the computation and offloads the rest to the next devices. Our
goal is to find a distribution that achieves a near-the-optimal
number of IPS (higher is better) or the lowest latency (lower
is better). In general, if we have W amount of work and n
workers, our speedup compared to a single node case is

Speedup = W + overheadsingle

W/n + overheadpipeline
(3)

in which the overheadpipeline entails communication overhead
(∝ data size), and some fixed overhead such as the network
set-up time between devices. Similarly, overheadsingle shows
the overhead associated with the single-node execution, such
as swap space activities. If the communication overhead dom-
inates our distribution, and single-device execution does not
have significant overhead, we experience a slowdown after
the distribution. Several examples of such layer configurations
can be found in Fig. 12. To avoid such scenarios, we need
to: 1) avoid unnecessary distribution to reduce the amount of
communication overhead and 2) associate enough work per
node so the benefit of parallelizing exceeds the communica-
tion overhead. To do so, we merge less compute-intensive
layers on a single node. As an online load-balancing tech-
nique, we also monitor idle nodes and combine the layers to
increase the utilization of each node, thereby achieving a bal-
anced pipeline. However, if the overheadsingle is significant,
such as swap memory activities in fc layers, in an accept-
able range of overheadpipeline, we experience speedups with
distribution, as observed in Figs. 9 and 14.

Generating a Balanced Pipeline: To create a near-optimal
distribution, the latency of each device should be similar to that
of other devices. Thus, the amount of work per device, or W/n,
should be the same. Model parallelism helps us gain access to
smaller granularities of work during distribution. On the other
hand, data parallelism does not change the amount of work per
device, but increases the throughput. With model parallelism,
the throughput of a task increases, so the effective latency seen

HADIDI et al.: TOWARD COLLABORATIVE INFERENCING OF DNNs ON IoT DEVICES 4957

Procedure 1 Heuristics for Distributing a DNN Model
procedure GENERATEDISTRIBUTION

Inputs: list of layers �, #Nodes n
memsize: Memory size per node
Regression models or profiling database, �

Outputs: dictionary of node IDs to a set of its tasks, �
Step1: Check memory usage all layers in � using �, if larger
than memsize, add that layer to the model parallelism list.
Step2: Using latency of layers in � and their split version, and
by ensuring sequential dependency of layers, try to create groups
of layers with the same latency. Create �.
Step3: Deploy �. Monitor queue occupancy and latency on each
device. Goto Step2.

by the next devices decreases. By considering these proper-
ties, to generate a distribution, first, we create a database with
a mix of: 1) regression models based on the amount of work
and type of layers and 2) profiled data from some layers and
their split versions (similar to the results in Section IV). Then,
we study our given DNN model layer by layer. If the memory
footprint is large and causes swap activities, for that layer, we
have to first use model parallelism. After that, we try to group
fewer compute-intensive and sequential layers to reduce the
communication overhead. The grouping is done in a way that
the average latency for processing an input on each device
would be similar. After deploying such an initial distribution,
we monitor the queue occupancy and latency of each device.
With these gathered new data, we repeat the above steps to
tune the distribution in runtime by creating a more balanced
pipeline. Procedure 1, in O(n), summarizes these steps. The
initial execution time (number of iterations of the procedure)
until the system adjusts the performance depends on the com-
plexity of the model. For the model in this article, it takes less
than 5 min, or around 25 iterations.

To give an unbiased view, the limitations of this approach
are the following. First, for the initial deployment, there should
be some initial measurements close to the size of each layer.
Second, our procedure currently is evaluated in systems with
the same type of devices. Third, devices might lose some data
points when the system is dynamically configured for a new
distribution. Finally, this article is focused on DNN models for
computer vision tasks. Note that although discussions in this
article are about the execution of a single DNN model, one
can extend our methods to multiple concurrent DNN mod-
els. However, the user needs to ensure that the system can
handle the computation loads of concurrent models either by
introducing more devices or designing reactive event-based
systems.

VI. SYSTEM EVALUATION

We evaluate our method on a distributed system with
RPi [20]. Table IV presents the specifications of an RPi. To
provide a comparison reference, we also execute DNN models
on Nvidia Jetson TX2 [42], the specifications of which are in
Table V. TX2 is a high-performance embedded platform with
both a CPU and GPU with 8 GB DDR4. In contrast, RPis are
an edge device with no GPU and less than 1 GB DDR2. On an

TABLE IV
RPI 3 SPECIFICATIONS

TABLE V
NVIDIA JETSON TX2 SPECIFICATIONS [42]

RPi distributed system, to show how our distribution heuris-
tics provide better performance, we compare our results with
a distributed system that deploys simple pipelining. A simple
pipeline ensures correctness, but would not necessarily be an
optimal design. For our implementations, we created a soft-
ware stack with Docker containers. We use Keras 2.1 [43] with
the TensorFlow backend (version 1.5) [44]. For RPC calls and
serialization, we use Apache Avro [45]. We use an IP table
file to assign tasks to each device. A local WiFi network with
the measured bandwidth of 94.1 Mb/s and a measured client-
to-client latency of 0.3 ms for 64 B is used. All trained weights
are loaded to each Pi’s storage (16 GB storage in our system),
so each Pi can be assigned to execute any part of a layer.
More details on the implementation can be found in [23]. Note
that each Pi has an SD card storage, for storing the weights,
which is relatively inexpensive compared to the main memory.
If local storage is limited, the assigned weight can also be
shared in the network from a network-storage filesystem. This
approach makes a tradeoff between how fast the switching
time between different models can be and per-device storage
usage.

After finding a distribution of computations, we create a sin-
gle file containing a Python dictionary of the IP addresses and
their assigned computation. We upload the file to all devices,
and each device, by reading the model description and its
assigned computation, finds its position in the pipeline. After
handshaking, which takes less than 1 min, the system is ready.
During runtime, each device reports its latency and request
queue occupancy. By collecting such status, we are able to find
bottleneck devices in our pipeline and create a more balanced
pipeline, as Procedure 1 describes.

AlexNet and VGG16: We deploy AlexNet and VGG16
models, including the last fc layers, on various distributed
systems. Since the first fc layer in AlexNet faces a limited
memory issue on an RPi, all of our distributions perform out-
put splitting for this layer. The rest of the conv are allocated to
idle devices. Our two near-optimal systems have four and six
devices and achieve higher than 2× speedups compared to dis-
tributed systems with a simple pipeline [Fig. 15(b)]. Because
AlexNet layers all have low computation requirements, we
could not get more benefit by distributing the computations.
Fig. 15(a) presents a more detailed performance measurement
for AlexNet. Compared with TX2 with a GPU and CPU, the
six-device distribution has a higher performance.

4958 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 6, JUNE 2020

Fig. 15. AlexNet deployment results. (a) IPS. (b) Speedup over the near-
optimal case for four and six devices.

Fig. 16. VGG16 deployment results. (a) IPS. (b) Speedup over the near-
optimal case for four and six devices.

Fig. 17. VGG16 layer-wise latency—VGG16 measured layer-wise latency
on an RPi for an inference.

The VGG16 model consists of more computationally inten-
sive layers compared to the layers of AlexNet. Therefore,
we use eight and ten devices for distribution to achieve up
to 6×speedup compared to the simple pipelining scenario,
as shown in Fig. 16(b). Moreover, as shown in Fig. 16(a),
with more performance details, both of our distributions have
higher performance than TX2 CPU. Our ten-device distribu-
tion also achieves similar performance to TX2 GPU. It is
worth noting that both of our near-optimal distributions have
higher performance than the TX2 CPU and a simple pipelin-
ing scenario. Similar to AlexNet, since we include the first fc
layer, all of our distributions perform output splitting for this
layer. For other layers, to gain a better insight, in Fig. 17,
we measured the layer-wise latency of VGG16 layers that
are executed on RPi. Except for the first fc layer, we are
able to run all other layers on a single RPi. But, some layers
have extremely long latencies, so we are bounded by such lay-
ers in our simple pipelining scenario (e.g., second conv). On
the other hand, in our eight- and ten-device systems with the
near-optimal distribution, we bypass this bottleneck by using
the model-parallelism methods for conv, that are proposed in
Section IV.

C3D: The C3D model, as discussed in Section III-B, incor-
porates 3-D conv. To understand this model behavior, we
analyze the layer-by-layer latency of C3D models on the RPi
in Fig. 18(a). As shown, the first layers of C3D are quite heavy
for IoT devices. For instance, the latency of the second conv
is 18 s. This high latency is caused by the high computational
demands of 3-D convolutions. Model-parallelism methods for
conv are particularly useful in distributing this among all
devices. We apply our three methods of model parallelism

Fig. 18. C3D Results I. (a) C3D layer-wise latency of a single inference.
(b) Achieved performance speedup after applying model-parallelism methods
on the heaviest layer (conv3D_2).

Fig. 19. C3D Results II—performance of C3D first three layer deployments
on various systems. (a) IPS. (b) Speedup over three-device sequential.

on three devices for the second (heaviest) conv. As seen,
we attain up to a 2.6×speedup by using three devices for this
layer. Note that the spatial- and filter-splitting methods achieve
higher performance than the channel-splitting method. This is
because the size of the input is large, and therefore, methods
such as channel splitting, which does not divide the input, have
a high overhead for communicating the copies to all devices,
whereas, both spatial- and filter-splitting methods have a lower
overhead due to the split input.

To get an estimation of the overall performance of C3D,
we select the heaviest layers of the C3D model (conv3D_2,
conv3D_2, and conv3D_4) and deploy them on a dis-
tributed system using our heuristics. The first system, our
baseline, is simply the sequential execution. By introduc-
ing extra devices, our heuristics split the computations of
conv3D_2, similar to Fig. 18(b). The results for both filter-
and channel-splitting methods for four and five devices are
shown in Fig. 19. As shown, with a higher number of devices,
the performance gain also increases. In all variations, the filter-
splitting method, as observed in Fig. 12 and discussed in the
previous paragraph, achieves higher performance than channel
splitting.

ResNet50 and Xception: The ResNet50 and Xception mod-
els have similar building blocks, as shown in Figs. 5–6. For
practical reasons of the limited number of devices, we choose
to experiment with Xception. Since the building blocks of both
models are similar, our observations are extendable to ResNet
models as well. We measure the layer-wise latency of layers in
Xception during single-batch inferencing, shown in Fig. 20. As
seen, in comparison with AlexNet and VGG16, for which the
final fc layers were the most compute-intensive and resource-
hungry layers, in Xception, some conv are more compute
intensive and resource hungry. To better understand the aggre-
gated processing time for Xception, we measured the total
latency of different blocks in Xception (as shown in Fig. 6),
when they are executed on a single RPi. Fig. 21 depicts the
measured latencies. As seen, block C has the longest latency
among other blocks. Since Xception is a large model, we

HADIDI et al.: TOWARD COLLABORATIVE INFERENCING OF DNNs ON IoT DEVICES 4959

Fig. 20. Xception layer-wise latency—Xception measured layer-wise latency on an RPi for a single inference.

Fig. 21. Xception blockwise latency—execution latency of Xception per
block on an RPi during a single inference.

Fig. 22. Reported queue occupancy for Xception—systems executing
Xception block C (see Fig. 6) in (a) sequential, (b) channel splitting on
two devices, and (c) filter splitting on two devices modes. Comparing with
the performance results presented in Fig. 23, monitoring tools help us solve
the performance bottlenecks of the system online.

Fig. 23. Experiments on Xception block C. (a) IPS. (b) Performance speedup
for the systems shown in Fig. 22, consisting of multiple RPis.

deployed only one block in our system. We chose the heav-
iest block (i.e., block C) and deployed it on three different
systems, shown in Fig. 22.

The system shown in Fig. 22(a) shows a simple sequential
distribution, in which each device processes a layer. Fig. 22(b)

shows a system that uses channel-splitting method for the
heaviest conv in block C. Similarly, Fig. 22(c) illustrates a
system in which the heaviest conv in the block C is dis-
tributed using the filter-splitting method. The performance
comparisons of these systems are shown in Fig. 23. As seen,
by including another device, our system can achieve up to a
2× speedup.

Fig. 22 also depicts the queue occupancy of the devices
that is extracted from our monitoring tools. The histograms
in the figure show the queue occupancy of the devices.
Note that queue size per device is limited to ten requests.
As seen, in Fig. 22(a), the queue of device B is always
full. Therefore, our heuristics apply splitting to the work
that is performed in device B. Fig. 22(b) and (c) shows
such splitting for the channel- and filter-splitting methods,
respectively. Although we still see a close-to-full occupancy
for devices B and C, which perform the split job, we observe
that device A occupancy has shifted to the right. This shows
that our method was successful in creating a more balanced
work distribution, but did not have enough available devices
to create the best distribution. Note that as discussed, our
heuristics have access to a database of similar experiments
that are done in Fig. 12. Therefore, it does not need to
perform both splittings to find the best performing one. Here,
we are showing both as an example.

VII. CONCLUSION

In this article, we proposed several new model-parallelism
methods for single-batch inferences of DNNs. We focused
on DNNs for visual applications that consist mostly of
CNN-based models. As discussed in this article, with the
aid of these methods, we can move the computations of
DNNs closer to the edge and IoT devices. These methods
divide the memory and computation footprint of DNN mod-
els and distribute them among several devices. We deployed
our heuristics for several state-of-the-art visual DNN mod-
els while measuring their performance on a cluster of RPis.
We planed to extend this article to heterogeneous nodes
by introducing IoT-tailored cluster managing tools such as
Kubernetes [46]. As another direction for future work, we
plan to extend this article to more than visual DNNs, such
as long short-term memories (LSTMs), covering areas, such
as translation and speech recognition. Furthermore, we are
studying the possibility of various methods in alleviating
the communication overhead such as bypassing the depen-
dencies between the layers, compression, and using coded
distribution [47].

4960 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 6, JUNE 2020

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[3] M. L. Merck et al., “Characterizing the execution of deep neural networks
on collaborative robots and edge devices,” in Proc. ACM Practice Exp.
Adv. Res. Comput. Rise Mach. Learn. (PEARC), 2019, pp. 1–6.

[4] R. Hadidi et al., “Characterizing the deployment of deep neural networks
on commercial edge devices,” in Proc. IISWC, 2019, pp. 35–48.

[5] Gartner Inc. (2015). Gartner Says 6.4 Billion Connected “Things”
Will Be in Use in 2016, Up 30 Percent From 2015. Accessed: Dec. 2,
2019. [Online]. Available: https://www.gartner.com/en/newsroom/press-
releases/2015-11-10-gartner-says-6-billion-connected-things-will-be-in-
use-in-2016-up-30-percent-from-2015

[6] F. Biscotti et al., The Impact of the Internet of Things on Data Centers,
vol. 18, Gartner Res., Stamford, CT, USA, 2014.

[7] I. Lee and K. Lee, “The Internet of Things (IoT): Applications,
investments, and challenges for enterprises,” Bus. Horizons, vol. 58,
May 2015, pp. 431–440.

[8] R. Hadidi, J. Cao, M. Woodward, M. S. Ryoo, and H. Kim, “Distributed
perception by collaborative robots,” IEEE Robot. Autom. Lett., vol. 3,
no. 4, pp. 3709–3716, Oct. 2018.

[9] B. Asgari, R. Hadidi, H. Kim, and S. Yalamanchili, “ERIDANUS:
Efficiently running inference of DNNs using systolic arrays,” IEEE
Micro, vol. 39, no. 5, pp. 46–54, Sep./Oct. 2019.

[10] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and Huffman
coding,” in Proc. Int. Conf. Learn. Represent., 2016. [Online]. Available:
arXiv:1510.00149.

[11] Y. Gong et al., “Compressing deep convolutional networks using vector
quantization,” 2014. [Online]. Available: arXiv:1412.6115.

[12] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural
networks on CPUs,” in Proc. NIPS, vol. 1, 2011, pp. 1–8.

[13] Compiling AI for the Edge, Ofer Dekel Microsoft Res., Redmond, WA,
USA, 2019.

[14] J. Devlin et al., “BERT: Pre-training of deep bidirectional transformers for
language understanding,” 2018. [Online]. Available: arXiv:1810.04805.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Neural Inf. Process.
Syst., 2012, pp. 1106–1114.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,
2015. [Online]. Available: arXiv:1409.1556.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[18] F. Chollet, “XCeption: Deep learning with depthwise separable
convolutions,” 2016.

[19] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri,
“Learning spatiotemporal features with 3D convolutional networks,” in
Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 4489–4497.

[20] Raspberry Pi Foundation. (2017). Raspberry Pi 3. Accessed:
Dec. 2, 2019. [Online]. Available: https://www.raspberrypi.org/products/
raspberry-pi-3-model-b/

[21] J. Mao, X. Chen, K. W. Nixon, C. D. Krieger, and Y. Chen, “MoDNN:
Local distributed mobile computing system for deep neural network,” in
Proc. Design Autom. Test Europe, 2017, pp. 1396–1401.

[22] S. Teerapittayanon, B. McDanel, and H. Kung, “Distributed deep neural
networks over the cloud, the edge and end devices,” in Proc. IEEE Int.
Conf. Distrib. Comput. Syst., 2017, pp. 328–339.

[23] R. Hadidi, J. Cao, M. Woodward, M. S. Ryoo, and H. Kim, “Real-time
image recognition using collaborative IoT devices,” in Proc. ReQuEST
Workshop ASPLOS, 2018, p. 4.

[24] Y. Kang et al., “NeuroSurgeon: Collaborative intelligence between the
cloud and mobile edge,” in Proc. Int. Conf. Archit. Support Program.
Lang. Oper. Syst., 2017, pp. 615–629.

[25] R. Hadidi et al., “Musical chair: Efficient real-time recognition using
collaborative IoT devices,” 2018. [Online]. Available: arXiv:1802.02138.

[26] Microsoft. (2017). Embedded Learning Library (ELL). Accessed: Dec. 2,
2019. [Online]. Available: https://microsoft.github.io/ELL/

[27] Google. (2017). TensorFlow Lite. Accessed: Dec. 2, 2019. [Online].
Available: https://www.tensorflow.org/mobile/tflite/

[28] Nvidia. NVIDIA TensorRT. Accessed: Dec. 2, 2019. [Online]. Available:
https://developer.nvidia.com/tensorrt

[29] Google. (2019). Edge TPU. Accessed: Dec. 2, 2019. [Online]. Available:
https://cloud.google.com/edge-tpu/

[30] Nvidia. (2019). Jetson Nano. Accessed: Dec. 2, 2019. [Online].
Available: https://www.developer.nvidia.com/embedded/jetson-nano-
developer-kit

[31] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017. [Online]. Available:
arXiv:1704.04861.

[32] M. Tan et al., “MnasNet: Platform-aware neural architecture search for
mobile,” 2018. [Online]. Available: arXiv:1807.11626.

[33] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” in Proc.
Neural Inf. Process. Syst., 2017, pp. 2181–2191.

[34] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN accelerator
efficiency through resource partitioning,” in Proc. Int. Symp. Comput.
Archit., 2017, pp. 535–547.

[35] J. Guo, S. Yin, P. Ouyang, L. Liu, and S. Wei, “Bit-width based resource
partitioning for CNN acceleration on FPGA,” in Proc. IEEE Symp. Field
Program. Custom Comput. Mach., 2017, p. 31.

[36] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural
networks with low precision multiplication,” 2014. [Online]. Available:
arXiv:1412.7024.

[37] U. Köster et al., “Flexpoint: An adaptive numerical format for efficient
training of deep neural networks,” in Proc. Neural Inf. Process. Syst.,
2017, pp. 1742–1752.

[38] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” 2016. [Online].
Available: arXiv:1605.04711.

[39] M. Courbariaux et al., “Binarized neural networks: Training deep neural
networks with weights and activations constrained to +1 or −1,” 2016.
[Online]. Available: arXiv:1602.02830.

[40] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
Proc. Eur. Conf. Comput. Vis., 2016, pp. 525–542.

[41] C. Szegedy et al., “Going deeper with convolutions,” in Proc. Comput.
Vis. Pattern Recognit., 2015, pp. 1–9.

[42] NVIDIA. (2017). Nvidia Jetson TX2. Accessed: Dec. 2, 2019.
[Online]. Available: https://developer.nvidia.com/embedded/jetson-tx2-
developer-kit

[43] F. Chollet et al. (2015). Keras. [Online]. Available: https://github.com/
fchollet/keras

[44] M. Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. [Online]. Available: https://www.tensorflow.org/

[45] TAS Foundation. (2017). Apache AVRO. Accessed: Dec. 2, 2019.
[Online]. Available: https://avro.apache.org

[46] R. Hadidi et al., “An edge-centric scalable intelligent framework to
collaboratively execute DNN,” in Proc. SysML Demo, 2019, p. 2.

[47] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Robustly executing DNNs
in IoT systems using coded distributed computing,” in Proc. ACM DAC,
2019, p. 234.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

