
Real-Time Image Recognition Using
Collaborative IoT Devices

Ramyad Hadidi
Georgia Institute of Technology

rhadidi@gatech.edu

Jiashen Cao
Georgia Institute of Technology

jcao62@gatech.edu

Matthew Woodward
Georgia Institute of Technology

mwoodward@gatech.edu

Michael S. Ryoo
mryoo@egovid.com

Hyesoon Kim
Georgia Institute of Technology

hyesoon@cc.gatech.edu

Abstract
Internet of things (IoT) devices capture and create var-
ious forms of sensor data such as images and videos.
However, such resource-constrained devices lack the ca-
pability to efficiently process data in a timely and real-
time manner. Therefore, IoT systems strongly rely on
a powerful server (either local or on the cloud) to ex-
tract useful information from data. In addition, during
communication with servers, unprocessed, sensitive, and
private data is transmitted throughout the Internet, a
serious vulnerability. What if we were able to harvest
the aggregated computational power of already existing
IoT devices in our system to locally process this data? In
this artifact, we utilize Musical Chair [3], which enables
efficient, localized, and dynamic real-time recognition
by harvesting the aggregated computational power of
these resource-constrained IoT devices. We apply Musi-
cal chair to two well-known image recognition models,
AlexNet and VGG16, and implement them on a network
of Raspberry PIs (up to 11). We compare inference per
second and energy per inference of our systems with
Tegra TX2, an embedded low-power platform with a
six-core CPU and a GPU. We demonstrate that the
collaboration of IoT devices, enabled by Musical Chair,
achieves similar real-time performance without the extra
costs of maintaining a server.

ACM Reference Format:
Ramyad Hadidi, Jiashen Cao, Matthew Woodward, Michael
S. Ryoo, and Hyesoon Kim. 2018. Real-Time Image Recog-
nition Using Collaborative IoT Devices. In Proceedings of

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned

by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ReQuEST at ASPLOS’18, March 2018, Williamsburg, VA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5923-8. . . $15.00
https://doi.org/10.1145/3229762.3229765

1st ACM Reproducible Quality-Efficient Systems Tourna-
ment on Co-designing Pareto-efficient Deep Learning (Re-
QuEST at ASPLOS’18). ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3229762.3229765

1 Extended Abstract
Musical Chair [3] is a technique for distributing deep
neural network (DNN) models over several devices. DNN
models have a variety of layers such as fully connected
(fc), convolution (conv), batch normalization (norm),
max pooling (maxpool), and activation (act) layers.
Among these layers, fully connected and convolution
layers are one the most resource-hungry and compute-
intensive. Therefore, Musical Chair [3] aims at alleviating
the compute cost and overcome the resource barrier
of these layers by distributing their computation. In
the paper, we discuss two modes of distributing these
layers: data parallelism and model parallelism. Model
parallelism is splitting parts of a given layer or group of
layers over multiple devices, whereas data parallelism is
providing the next input to multiple devices in a network.
Note that we are examining this problem in the context of
real-time data processing, in which we have a continuous
stream of input data. In summary, for conv layers, data
parallelism yields a higher performance in comparison
with model parallelism. On the other hand, for fc layers,
depending on the size of the input and the fc layer, the
choice between model- and data-parallelism varies. As
discussed in the paper, this is because of the resource-
constrained nature of IoT devices. In this section, first,
we explain our devices, then, describe Alexnet [1] and
VGG16 [2] models, and finally, present Musical Chair
task assignments for these models.

1.1 Technical Description

Hardware/Software Overview: In our implementa-
tion of a distributed IoT network, we use several Rasp-
berry PIs [5], the specification of which is shown in
Table 1. We choose Raspberry PI since it is a cheap and
accessible platform that represents low-end IoT devices.
On each PI, with the Ubuntu 16.04 operating system,

https://doi.org/10.1145/3229762.3229765
https://doi.org/10.1145/3229762.3229765
http://www.acm.org/publications/policies/artifact-review-badging#replicated
http://www.acm.org/publications/policies/artifact-review-badging#available
http://www.acm.org/publications/policies/artifact-review-badging#reusable

ReQuEST at ASPLOS’18, March 2018, Williamsburg, VA, USA

Table 1. Raspberry PI 3 specification [5]

CPU 1.2GHz Quad Core ARM Cortex-A53
Memory 900MHz 1GB RAM LPDDR2
GPU No GPGPU Capability
Price $35 (Board) + $5 (SD Card)

Power

Consumption

Idle (No Power Gating) 1.3W
%100 Utilization 6.5W

Averaged Observed 3W

Table 2. Nvidia Jetson TX2 specifications [6].

CPU
2.00GHz Dual Denver 2 +

2.00GHz Quad Core ARM Cortex-A57

Memory 1600MHz 8GB RAM LPDDR4
GPU Pascal Architecture - 256 CUDA Core

Total Price $600

Power

Consumption

Idle (Power Gated) 5W
%100 Utilization 15W

Averaged Observed 9.5W

we use Keras 2.1 [7] with the TensorFlow 1.5 [8] back-
end. Some arbitrary Raspberry PIs are equipped with
a camera [9] as well for demo purposes. But, for mea-
surement purposes, these cameras are not required since
inputs can be populated with random numbers instead
of images. For power measurements, using a power an-
alyzer, we measured the consumed power of a powered
USB 3.0 hub that powers all Raspberry PIs. Moreover,
timing measurements are done in the source code. To
compare our collaborative IoT implementations, we also
measure the performance and power consumption of our
models on Jetson TX2 [6]. the specification of which is
in Table 2.
Models Overview: We study single-stream Alexnet
and VGG16 image recognition models, the architecture
of which is shown in Figures 1 and 2, respectively.

Input

220

220

3

11

11

55

55
48

5
5

128

27

27

3

192

13

13
3

3

192

13

13
3

3

128

13

13
3

3

4092
1000

4092

conv2D
maxpool

conv2D
maxpool

conv2D conv2D
conv2D
maxpool

fc
_1

fc
_2

fc
_3

3

Convolution (CNN) Layers

Figure 1. Single stream AlexNet model.

22
4

224
3

3
3

64 40
92 10

00
40

92

conv2D fc
_1

fc
_2

fc
_3

3
3

64

3
3

3
3

112

11
2

128

3
3

128

conv2D
maxpool conv2D

conv2D
maxpool

3
3

56
256

conv2D

56

2x

3
3

256

conv2D
maxpool

3
3

28
512

conv2D

28

conv2D
maxpool

3
3

512

3
3

14
512

conv2D

14

maxpool

3
3

512

2x
2x conv2D

Block 1 Block 2 Block 3 Block 4 Block 5

Figure 2. VGG16 model.

Distributed Models: After applying Musical Chair,
for Alexnet, Figure 3 illustrates generated system ar-
chitectures for five- and six-devices. In the five-device
system, model parallelism is applied on the fc 1 layer,
whereas, in six-device configuration, an additional data
parallelism is performed on conv layers. For VGG16,

Figure 4 depicts two generated systems for nine and 11
devices. In both systems, fc 1 is divided since its input
size is extremely large, while, since the computation of
fc 2 and fc 3 are not a bottleneck, Musical Chair prior-
itize the distribution of other layers such as conv layers
using data parallelism.

Input Stream

Tasks of A

(a) Five-device system

(b) Six-device system

fc_1(2k)
Task of C

fc_1(2k)
Task of D

fc_2 (4k)
fc_3 (1k)

Task of E

Merge

Input Stream
Tasks of A

fc_1(2k)
Task of E

fc_1(2k)
Task of D

fc_2 (4k)
fc_3 (1k)

Task of F

MergeCNN Layers

Tasks of B & C

Data Parallelism Model Parallelism

Model Parallelism

Model Parallelism

Model Parallelism

CNN Layers
Tasks of B

Figure 3. System architectures for AlexNet.

M
erge

Block 5
Tasks of F

Block 1
Tasks of B

Block 2,3,4

Tasks of C, D,& E

fc_1(2k)
Task of H

fc_1(2k)
Task of G

fc_2 (4K)
fc_3 (1k)

Task of IMerge

Input Stream

Tasks of A
Block 1,2,

3,4

Tasks of B, C, D, E
F, G,& H

fc_1(2k)
Task of K

fc_1(2k)
Task of J

fc_2 (4K)
fc_3 (1k)

Task of L

(a) Nine-device system

(b) 11-device system

Model Parallelism

Model Parallelism
Data Parallelism

Data Parallelism Model Parallelism

Model Parallelism

Input Stream

Tasks of A

Figure 4. System architectures for VGG16.

1.2 Empirical Evaluation

Figure 5a depicts performance in terms of inference
per second (IPS) for Alexnet. The performance of six-
device system is similar to TX2 with CPU, while its
performance is only 30% worst than TX2 with GPU.
Figure 5b and c shows power consumption of all systems.
As shown, the static energy consumption of the systems
with Raspberry PIs are significantly higher, this is be-
cause (i) Raspberry PIs have several several unnecessary
peripherals enabled, (ii) TX2 is a low-power design with
power gating capability, and (iii) Raspberry PIs utilize
more number of communication modules. Even so, we
observe that systems with Raspberry PIs achieve better
dynamic energy consumption. Figure 6 illustrates similar
metrics for VGG16 model. Since VGG16 is more compu-
tationally intensive, we use more devices in our systems
to achieve similar performance with TX2. When the
number of devices increases from nine to 11, we achieve
2.3x better performance by reassigning all CNN blocks
and performing more optimal data parallelism. In fact,
compared to the TX2 with GPU, the 11-device system
achieves comparable IPS (15% degradation).

References
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
Classification With Deep Convolutional Neural Networks,” in

ReQuEST at ASPLOS’18, March 2018, Williamsburg, VA, USA

0

0.5

1

1.5

2

TX2 (G
PU)

TX2 (C
PU)

5-Deivce

6-Device

En
er

gy
 p

er
 In

fe
re

nc
e

(J)

Dynamic Energy Static Energy

0
1
2
3
4
5
6
7
8

TX2 (G
PU)

TX2 (C
PU)

5-Deivce

6-DeviceIn
fe

re
nc

e
pe

r S
ec

on
d

(IP
S)

0
0.5
1

1.5
2

2.5

TX2 (G
PU)

TX2 (C
PU)

5-Deivce

6-DeviceEn
er

gy
 p

er
 In

fe
re

nc
e

(J)

Total Energy

(a) IPS (b) Dynamic and Static Energy (c) Total Energy

Figure 5. AlexNet: Measured IPS (a), static and dy-
namic energy consumption (b), and total energy con-
sumption (c).

0
5
10
15
20
25
30

TX2 (G
PU)

TX2 (C
PU)

9-Deivce

11-DeviceEn
er

gy
 p

er
 In

fe
re

nc
e

(J)

Dynamic Energy Static Energy

0
0.2
0.4
0.6
0.8
1

1.2
1.4

TX2 (G
PU)

TX2 (C
PU)

9-Deivce

11-Device

In
fe

re
nc

e
pe

r S
ec

on
d

(IP
S)

0
10
20
30
40
50

TX2 (G
PU)

TX2 (C
PU)

9-Deivce

11-Device

En
er

gy
 p

er
 In

fe
re

nc
e

(J)

Total Energy

(a) IPS (b) Dynamic and Static Energy (c) Total Energy

Figure 6. VGG16: Measured IPS (a), static and dy-
namic energy consumption (b), and total energy con-
sumption (c).

Advances in Neural Information Processing Systems (NIPS),

pp. 1097–1105, 2012.
[2] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” in International

Conference on Learning Representations (ICLR), 2015.
[3] R. Hadidi, J. Cao, M. Woodward, M. Ryoo, and H. Kim, “Mu-
sical Chair: Efficient Real-Time Recognition Using Collaborative

IoT Devices,” ArXiv e-prints:1802.02138.
[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet

Large Scale Visual Recognition Challenge,” International Journal
of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[5] R. P. Foundation, “Raspberry Pi 3.” https://www.raspberrypi.
org/products/raspberry-pi-3-model-b/, 2018. [Online; accessed
5/1/18].

[6] NVIDIA, “NVIDIA Jetson TX.” http://www.nvidia.com/
object/embedded-systems-dev-kits-modules.html, 2017. [Online;

accessed 5/1/18].

[7] F. Chollet et al., “Keras.” https://github.com/fchollet/keras,
2015.

[8] M. Abadi et al., “TensorFlow: Large-Scale Machine Learn-

ing on Heterogeneous Systems,” 2015. Software available from
tensorflow.org.

[9] R. P. Foundation, “Raspberry Pi 3.” https://www.raspberrypi.
org/products/camera-module-v2/, 2018. [Online; accessed 5/1/18].
[10] T. A. S. Foundation, “Apache Avro.” https://avro.apache.org,
2018. [Online; accessed 5/1/18].
[11] NVIDIA, “NVIDIA JetPack.” https://developer.nvidia.com/
embedded/jetpack, 2018. [Online; accessed 5/1/18].

[12] ReQuEST at ASPLOS’18:, “1st Reproducible Tournament
on Pareto-efficient Image Classification.” http://cknowledge.org/
request-cfp-asplos2018.html, 2018. [Online; accessed 5/1/18].

[13] Thierry Moreau, Anton Lokhmotov, Grigori Fursin, “Introduc-
ing ReQuEST: an Open Platform for Reproducible and Quality-

Efficient Systems-ML Tournaments,” arXiv 1801.06378, 2018.

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
https://github.com/fchollet/keras
https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/camera-module-v2/
https://avro.apache.org
https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/embedded/jetpack
http://cknowledge.org/request-cfp-asplos2018.html
http://cknowledge.org/request-cfp-asplos2018.html

ReQuEST at ASPLOS’18, March 2018, Williamsburg, VA, USA

A Artifact Appendix
Submission and reviewing methodology:
http://cTuning.org/ae/submission-20171101.html

A.1 Abstract

This Artifact Appendix describes experimental workflow, artifacts and results from this paper evaluated during the
1st reproducible ReQuEST tournament at the ACM ASPLOS’18:

∙ Original artifact: https://github.com/parallel-ml/asplos2018-workshop

∙ Latest CK workflow: https://github.com/ctuning/ck-request-asplos18-iot-farm

∙ CK results: https://github.com/ctuning/ck-request-asplos18-results-iot-farm

∙ Artifact DOI: https://doi.org/10.1145/3229771

∙ ReQuEST submission and reviewing guidelines: http://cknowledge.org/request-cfp-asplos2018.html ([12])

∙ ReQuEST goals: [13]

∙ ReQuEST workflows: https://github.com/ctuning/ck-request-asplos18-results

∙ ReQuEST scoreboard: http://cKnowledge.org/request-results

Our artifact provides source code for all of our implementations on a public Github repository. The source codes
allows the evaluation of our results on a network of connected Raspberry PI 3s and Nvidia Jetson TX2. Note that for
measuring the energy consumption, a power analyzer is needed. Additionally, to measure the energy consumption
of several Raspberry PIs, we utilize a powered USB 3.0 hub and measure its energy consumption with the power
analyzer.

A.2 Artifact check-list

Details: http://cTuning.org/ae/submission extra.html

∙ Algorithm: Image recognition models of Alexnet and VGG16.
∙ Program: Written scripts in Keras framework.
∙ Compilation: Python ≥ 2.7.
∙ Binary: will be compiled on a target platform.
∙ Data set: Randomly generated images with Numpy (thus will not be able to test accuracy).
∙ Run-time environment: Ubuntu 16.04 ; Python version ≥ 2.7; Keras ≥ 2.1.3 with Tensorflow-gpu ≥ 1.5 for
the backend; (for Raspberry PI systems) Apache Avro [10] ≥ 1.8.2; (for TX2 GPU) CUDA 8.0 with cuDNN ≥
5.1.

∙ Hardware: Nvidia Jetson TX2 ; up to 11 Raspberry PI 3 with 16GB SD cards; power analyzer; Wifi router
(we use 300Mbps, 2.4GHz 802.11n).

∙ Execution: Automated via CK command line
∙ Metrics: Inference per second; static and dynamic energy consumption.
∙ Output: Scripts output end-to-end latency. User measures power consumption during idle state and inference
operations.

∙ Experiments: Performing inference on different hardware.
∙ How much disk space required (approximately)?
∙ How much time is needed to prepare workflow (approximately)?
∙ How much time is needed to complete experiments (approximately)?
∙ Publicly available?: Yes
∙ Code license(s)?: Apache 2.0
∙ CK workflow framework used? Yes
∙ CK workflow URL: https://github.com/ctuning/ck-request-asplos18-iot-farm
∙ CK results URL: https://github.com/ctuning/ck-request-asplos18-results-iot-farm
∙ Original artifact: https://github.com/parallel-ml/asplos2018-workshop

A.3 Description

A.3.1 How delivered

Our source code and scripts are available on Github: https://github.com/parallel-ml/asplos2018-workshop. A brief
guide, similar to this artifact, is also available at README.md in the repository.

https://github.com/parallel-ml/asplos2018-workshop
https://github.com/ctuning/ck-request-asplos18-iot-farm
https://github.com/ctuning/ck-request-asplos18-results-iot-farm
https://doi.org/10.1145/3229771
http://cknowledge.org/request-cfp-asplos2018.html
https://github.com/ctuning/ck-request-asplos18-results
http://cKnowledge.org/request-results
http://cTuning.org/ae/submission_extra.html
https://github.com/ctuning/ck-request-asplos18-iot-farm
https://github.com/ctuning/ck-request-asplos18-results-iot-farm
https://github.com/parallel-ml/asplos2018-workshop
https://github.com/parallel-ml/asplos2018-workshop

ReQuEST at ASPLOS’18, March 2018, Williamsburg, VA, USA

A.3.2 Hardware dependencies

We use Nvidia Jetson TX2 for the first part of the experiments. In the second part, we utilize up to 11 Raspberry PI
3s. In addition, a wifi router is necessary for the connection between Raspberry PIs. For both part, a conventional
power analyzer is needed to measure the power consumption of its output. To easily measure the power consumption
of Raspberry PIs, the usage of a powered USB 3.0 hub is recommended.

A.3.3 Software dependencies

Both our hardware, TX2 and Raspberry PI, are AArch64 architectures. We use Ubuntu 16.04 on both systems,
however, similar Linux distribution should also work. On TX2, we use NVIDIA JetPack 3.0 to install CUDA 8.0
and cuDNN 5.1. Then, we utilize pip, a Python package manager, to install Keras with a Tensorflow-gpu backend,
this installation procedure is similar on Raspberry PI as well. In addition, for Raspberry PI, we install Apache Avro
through pip for managing remote procedure calls (RPC).

A.4 Installation

TX2: After installing a Linux distribution on TX2 (we use Ubuntu 16.04), install Nvidia JetPack [11] for enabling
GPU support (CUDA and cuDNN). After installing Python and pip, install Keras through pip. Keras should be able
to install its dependencies with pip automatically. If not, follow the Keras guide, the url of which is in the README.md.
Raspberry PI: For connivence of not repeating every step on all 11 Raspberry PIs, we suggest that performing
all steps on a single Raspberry PI and then cloning its SD card. We have provided dependency file in the repo for
CPU-based installation. You can execute it with bellow command to install packages:

pip i n s t a l l −r requ i rements . txt

Moreover, make sure ports number 12345 and 9999 are open on all Raspberry PIs and your router. Then, get all of the IP
addresses of Raspberry PIs in your network, and fill them in resource/ip files under mutiple-devices/{experiment}
dir based on Figures 3 and 4. The files are in the JSON format and each task is assigned with a list of IPs. For
instance, for VGG16, in nine-device system (Figure 4a), you should have three devices for block234 and two devices
for fc 1.

A.5 Experiment workflow

TX2: Go to the single-device directory, the predict.py script in each model executes 50 inferences. Then, it
reports the average time per inference. For energy measurements, first, measure the idle power of TX2 (static power),
then, during inference time measure the consumed power (static and dynamic power). Use the commands below to
execute CPU and GPU versions:

#GPU ve r s i on

python p r ed i c t . py

#CPU ver s i on

CUDA VISIBLE DEVICE= python p r ed i c t . py

Raspberry PI: Go to the multiple-devices/{experiment} directory on each Raspberry PI. On all of devices
except the initial sender, execute:

python node . py

Then, start the data sender with:

python i n i t i a l . py

The initial node receives the inference responses back from the end node and prints end-to-end latency and per-layer
latency for each inference. For energy measurements, first, measure the idle power of the system (we use a 14-port
powered USB 3.0 hub) (static power), then, during inference time measure the consumed power (static and dynamic
power).

A.6 Evaluation and expected result

The expected results should be similar to Figures 5 and 6. In these figures, IPS, shown in subfigures a, is derived
by dividing one by average end-to-end latency. Note that in Raspberry systems, since network congestion affects
the latency, expect around 10%–20% variation in the results. For energy measurements, our power analyzer reports

ReQuEST at ASPLOS’18, March 2018, Williamsburg, VA, USA

consumed power (𝑊/𝑠), so we multiply this reported number by end-to-end latency to derive total energy consumption
per inference (𝐽). To derive dynamic energy consumption, simply subtract static energy consumption (recorded during
idle state) from total energy consumption (recorded during inference).

A.7 Unified installation and evaluation for the ReQuEST scoreboard using Collective Knowledge
framework

A.7.1 Installation

Install global prerequisites (Ubuntu and similar)

$ sudo apt-get install libhdf5-dev

$ sudo apt-get install cython

$ sudo apt-get install python-h5py

$ sudo apt-get install python-pip

$ pip install matplotlib

$ pip install h5py

Minimal CK installation
The minimal installation requires:

∙ Python 2.7 or 3.3+ (limitation is mainly due to unitests)

∙ Git command line client.

You can install CK in your local user space as follows:

$ git clone http://github.com/ctuning/ck

$ export PATH=$PWD/ck/bin:$PATH

$ export PYTHONPATH=$PWD/ck:$PYTHONPATH

You can also install CK via PIP with sudo to avoid setting up environment variables yourself:

$ sudo pip install ck

Install this CK repository with all dependencies (other CK repos to reuse artifacts)

$ ck pull repo:ck-request-asplos18-iot-farm

A.7.2 Install this CK workflow from the ACM Digital Library snapshot

It is possible to install and test the snapshot of this workflow from the ACM Digital Library without interfering
with your current CK installation. Download related file ”request-asplos18-artifact-?-ck-workflow.zip” to a temporary
directory, unzip it and then execute the following commands:

$. ./prepare_virtual_ck.sh

$. ./start_virtual_ck.sh

All CK repositories will be installed in your current directory. You can now proceed with further evaluation as
described below.

Install or detect TensorFlow via CK
We tested this workflow with TF 1.5.
You can try to detect and use already installed TF on your machine as follows:

$ ck detect soft --tags=lib,tensorflow

Alternatively, you can install pre-built CPU version via CK as follows (please select Python 2 if several Python
installations are automatically detected by CK):

$ ck install package --tags=lib,tensorflow,v1.5.0,vcpu,vprebuilt

If you plan to use NVIDIA GPU, you can install CUDA version instead:

$ ck install package --tags=lib,tensorflow,v1.5.0,vcuda,vprebuilt

If you want to build TF from sources, you can install it different versions as follows (you may need to limit the
number of used processors on platforms with limited memory):

$ ck install package --tags=lib,tensorflow,v1.5.0,vsrc --env.CK_HOST_CPU_NUMBER_OF_PROCESSORS=1

Finally, you can install all available TF packages via CK as follows:

$ ck install package --tags=lib,tensorflow

Now you can install Keras via CK with all sub-dependencies for this workflow:

ReQuEST at ASPLOS’18, March 2018, Williamsburg, VA, USA

$ ck install package:lib-keras-2.1.3-request

A.7.3 Benchmarking on a single device (CPU)

AlexNet:

$ ck run program:request-iot-benchmark --cmd_key=benchmark-alexnet-single-device-cpu

VGG16

$ ck run program:request-iot-benchmark --cmd_key=benchmark-vgg16-single-device-cpu

A.7.4 Benchmarking on a single device (GPU)

First test that CUDA-powered GPU is detected by CK:

$ ck detect platform.gpgpu --cuda

AlexNet

$ ck run program:request-iot-benchmark --cmd_key=benchmark-alexnet-single-device-gpu

VGG16

$ ck run program:request-iot-benchmark --cmd_key=benchmark-vgg16-single-device-gpu

A.7.5 Benchmarking on a farm of machines (AlexNet)

First you need to describe configuration of your farm via CK.
For example, for 5 device configuration for AlexNet, prepare JSON file with any name such as ”’farm-5.json”’

describing all IP addresses of your nodes:

{

"node":

{

"initial": [

"192.168.1.8"

],

"block1": [

"192.168.1.3"

],

"block2": [

"192.168.1.4", "192.168.1.5"

],

"block3": [

"192.168.1.6"

]

}

}

Note that IP of ”initial” node is the one where you will run benchmarking.
Now you must register this configuration in the CK with some name such as ”farm-5” as follows:

$ ck add machine:farm-5 --access_type=avro --avro_config=farm-5.json

Select linux-32 or linux-64 depending on your nodes. You can view all registered configurations of target platforms
as follows:

$ ck show machine

Now must log in to all your nodes and perform all above installation steps to install Python, CK, TensorFlow and
Keras. Then you can start servers on all nodes (apart from ”initial”) as follows:

$ ck run program:request-iot-benchmark --cmd_key=benchmark-alexnet-farm-5-nodes-start-server \

--target=farm-5

Now you can run benchmark for distributed inference as follows:

$ ck run program:request-iot-benchmark --cmd_key=benchmark-alexnet-farm-5-nodes --target=farm-5 \

--env.STAT_REPEAT=5

ReQuEST at ASPLOS’18, March 2018, Williamsburg, VA, USA

You can change the number of repetitions using STAT REPEAT environment variable.

A.7.6 Benchmarking on a farm of machines (VGG16, 9 nodes)

For VGG16 with 9 nodes, create ”farm-9.json” and register farm-9 machine:

{

"node":

{

"initial": [

"192.168.1.8"

],

"block1": [

"192.168.1.3"

],

"block234": [

"192.168.1.4", "192.168.1.5", "192.168.1.6"

],

"block5": [

"192.168.1.7"

],

"fc1": [

"192.168.1.9", "192.168.1.10"

],

"fc2": [

"192.168.1.11"

]

}

}

$ ck add machine:farm-9 --access_type=avro --avro_config=farm-9.json

Now start server on all nodes as follows:

$ ck run program:request-iot-benchmark --cmd_key=benchmark-vgg16-farm-9-nodes-start-server \

--target=farm-9

Now you can run benchmark for distributed inference as follows:

$ ck run program:request-iot-benchmark --cmd_key=benchmark-vgg16-farm-9-nodes --target=farm-9 \

--env.STAT_REPEAT=5

A.7.7 Benchmarking on a farm of machines (VGG16, 11 nodes)

For VGG16 with 11 nodes, create ”farm-11.json” and register farm-11 machine:

{

"node":

{

"initial": [

"192.168.1.8"

],

"block12345": [

"192.168.1.3","192.168.1.4","192.168.1.5","192.168.1.6",

"192.168.1.7","192.168.1.9","192.168.1.10"

],

"fc1": [

"192.168.1.11", "192.168.1.13"

],

"fc2": [

"192.168.1.12"

ReQuEST at ASPLOS’18, March 2018, Williamsburg, VA, USA

]

}

}

$ ck add machine:farm-11 --access_type=avro --avro_config=farm-11.json

Now start server on all nodes as follows:

$ ck run program:request-iot-benchmark --cmd_key=benchmark-vgg16-farm-11-nodes-start-server \

--target=farm-11

Now you can run benchmark for distributed inference as follows:

$ ck run program:request-iot-benchmark --cmd_key=benchmark-vgg16-farm-11-nodes --target=farm-11 \

--env.STAT_REPEAT=5

A.7.8 Scripts for unified benchmarking for ReQuEST scoreboard

You can now perform unified benchmarking and collect statistics in the CK format using scripts in the following CK
entry:

$ cd ‘ck find script:benchmark-request-iot-farm‘

If you plan to benchmark workflow on your host machine (CPU,GPU) while you already added targets for distributed
inference, you must also add a ”host” target to the CK as follows:

$ ck add machine:host --use_host

You can now benchmark inference on your host as follows:

$ python benchmarking.py --cmd_key=benchmark-alexnet-single-device-cpu

$ python benchmarking.py --cmd_key=benchmark-alexnet-single-device-gpu

$ python benchmarking.py --cmd_key=benchmark-vgg16-single-device-cpu

$ python benchmarking.py --cmd_key=benchmark-vgg16-single-device-gpu

You can also benchmark distributed inference using target machines farm-5, farm-9 and farm-11: (you must start
servers on each node as described in previous section)

$ python benchmarking.py --cmd_key=benchmark-alexnet-farm-5-nodes --target=farm-5

$ python benchmarking.py --cmd_key=benchmark-vgg16-farm-9-nodes --target=farm-9

$ python benchmarking.py --cmd_key=benchmark-vgg16-farm-11-nodes --target=farm-11

CK will record experimental data in a unified format in the following entries:

$ ck ls local:experiment:ck-request-asplos18-iot-farm*

You can pack them and send ”ckr-local.zip” to ReQuEST organizers as follows:

$ ck zip local:experiment:ck-request-asplos18-iot-farm*

	Abstract
	1 Extended Abstract
	1.1 Technical Description
	1.2 Empirical Evaluation

	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Unified installation and evaluation for the ReQuEST scoreboard using Collective Knowledge framework

