IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

3709

Distributed Perception by Collaborative Robots

Ramyad Hadidi *, Jiashen Cao

Abstract—Recognition ability and, more broadly, machine
learning techniques enable robots to perform complex tasks and al-
low them to function in diverse situations. In fact, robots can easily
access an abundance of sensor data that are recorded in real time
such as speech, image, and video. Since such data are time sensi-
tive, processing them in real time is a necessity. Moreover, machine
learning techniques are known to be computationally intensive and
resource hungry. As a result, an individual resource-constrained
robot, in terms of computation power and energy supply, is of-
ten unable to handle such heavy real-time computations alone. To
overcome this obstacle, we propose a framework to harvest the
aggregated computational power of several low-power robots for
enabling efficient, dynamic, and real-time recognition. Our method
adapts to the availability of computing devices at runtime and ad-
justs to the inherit dynamics of the network. Our framework can
be applied to any distributed robot system. To demonstrate, with
several Raspberry-Pi3-based robots (up to 12) each equipped with
a camera, we implement a state-of-the-art action recognition model
for videos and two recognition models for images. Our approach
allows a group of multiple low-power robots to obtain a similar
performance (in terms of the number of images or video frames
processed per second) compared to a high-end embedded platform,
Nvidia Tegra TX2.

Index Terms—Deep learning in robotics and automation,
distributed robot system.

I. INTRODUCTION

HE availability of larger datasets, improved algorithms,
T and increased computing power is rapidly advancing the
applications of deep neural networks (DNNs). Thisadvance-
ment has extendedthe capabilities of machine learning to areas
such as computer vision [1], natural language processing [2],
neural machine translation [3], and video recognition [4], [5].
In the meantime, robots have access to an abundance of data
from their environment and are in desperate need to extract use-
ful information for enhanced handling of complex situations.
While robots can benefit tremendously from DNNS, satisfying
their intensive computation and data requirementsis a challenge
for robots. These challenges are even exacerbated in resource-
constrained devices, such as low-power robots, mobiles, and
Internet of things (IoT) devices, and a significant amount of
research efforts has been invested to overcome them [6]-[10],

Manuscript received February 24, 2018; accepted June 19, 2018. Date of
publication July 16, 2018; date of current version August 8, 2018. This letter
was recommended for publication by Associate Editor P. Ogren and Editor N. Y.
Chong upon evaluation of the reviewers’ comments. This work was supported
by Intel and NSF CSR 1815047 and 1526798.

R. Hadidi, J. Cao, M. Woodward, and H. Kim are with the Computer
Science School and Electrical Engineering Department, Georgia Institute of
Technology, Atlanta, GA 30332 USA (e-mail: rhadidi@gatech.edu; jcao62;
jcao62@gatech.edu; mwoodward @ gatech.edu; hyesoon@cc.gatech.edu).

M. S. Ryoo is with EgoVid, Inc., Ulsan 44919, South Korea (e-mail:
mryoo@egovid.com).

Digital Object Identifier 10.1109/LRA.2018.2856261

, Matthew Woodward, Michael S. Ryoo, and Hyesoon Kim

e 0

.
“o . 1
° §° Balloon. :

@ . ’

Computation Domain

(a (b)

Computation Domain

Fig. 1. Collaborative robots performing distributed inference. (a) Single
Robot. (b) Collaborative Robots.

R i
i PR
GoPiGo ﬁ §
(@) (b)

Fig. 2. Our GoPiGo distributed robot system. (a) GoPiGo Robot. (b) Our
Distributed Robot System.

such as collaborative computation between edge devices and
the cloud [11]-[13], or customized mobile implementations
[14]-[20]. Despite all these efforts, scaling current DNNs to
robots and processing generated data in real time faces chal-
lenges due to limited computing power and energy supplies in
robots. Hence, in order to handle current and future DNN ap-
plications that are more resource hungry [21]-[23] and extract
useful information from raw data in a timely manner, creating
an efficient solution is critical.

Our main idea is to utilize the aggregated computational
power of robots in a distributed robot system to perform DNN-
based recognition in real time. Such collaboration enables robots
to take advantage of the collective computing power of the group
in an environment to understand the collected raw data, while
none of the robots would experience energy shortage. Although
such collaboration could be extended to a variety of systems,
limited computing power and memory, scarce energy resources,
and tight real-time performance requirementsmake this chal-
lenge unique to robots. In this letter, we propose a technique
for collaborative robots to perform cost-efficient, real-time, and
dynamic DNN-based computation to process raw data (Fig. 1).
Our proposed technique examines and distributes a DNN model
to gain high real-time performance, the number of inferences
per second. We explore both data parallelism and model par-
allelism, where data parallelism consists of processing inde-
pendent data concurrently and model parallelism consists of
splitting the computation across multiple robots. For demon-
stration, we use up to 12 GoPiGos [24], which are Raspberry-
Pi3-based [25] robots, each with a camera [26] (Fig. 2). As an
example DNN, to detect an object and related types of actions
happening in an environment, we implement a state-of-the-art
action recognition model [4] with 15 layers and two popular
image recognition models, AlexNet [1] and VGG16 [22].

2377-3766 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8731-1084
https://orcid.org/0000-0002-0079-2146

3710

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

TABLE I
COMPARISON WITH RECENT RELATED WORK

End-Compute Number ‘ Localized Real-Time Partitioning Model- & Data- Runtime
Device of Devices Inference Data Process Mechanism Parallelism Adaptability
Neurosurgeon [11] Tegra TK1 [27] 1 X X Inter-Layer X X
MoDNN [28] LG Nexus 5 4 v X Intra-Layer X
DDNN [13] X Many X v Inter-Layer Data Parallelism X
Our Method Raspberry Pi [25] Many v v Intra- & Inter-Layer Both v
The summary of our contributions in this letter is as follows: Convolution (CNN) Lavers
. conv: conv2D “ o~
(i) We develop a profiling-based technique to effectively dis- M oot marpoot . R
tribute DNN-based applications on a distributed robot system N iy . rexeot 3
while considering memory usage, communication overhead, and L — g H
real-time data processing performance. (ii) We propose a tech- >~ 192 AN m AN 1000
nique that dynamically adapts to the number of available col- 2 8 aoss aons
laborative robots and is able to interchange between the robot, @
which inputs data, and computational robots. (iii) We apply our Block 1 Block2 Block3 Blocka Block s
technique on a distributed robot system with Raspberry-Pi3- ConED marposd comzd KRR L 2y ST 2y comad PO
. . . . conv2D maxpool 2x_ conv2D 8
based hardware, investigating a state-of-the-art action and two N\ i;m
image recognition DNN models. x Eﬁ ﬁi H
14 22 g
512 512 2 @
II. RELATED WORK ®)
Performing distributed perception with collaborative robots
Fig. 3. Image recognition models. (a) Single stream AlexNet model.

is a new concept; however, various related research to process
DNN applications for real-time performance has been done. One
of the first papers to distribute computation is [29]; however, it
investigates such distribution and partitioning specific for train-
ing and not inference while only focusing on high-performance
hardware. A recent work, Neurosurgeon [11], dynamically par-
titions a DNN model between a single edge device (Tegra TK1,
$200) and the cloud for higher performance and better energy
consumption. Neurosurgeon does not study the collaboration
between edge devices and is dependent on the existence of a
cloud service. A similar study of partitioning the computations
between mobile and cloud is also done in [12] using the Galaxy
S3. Another work, MoDNN [28], creates a local distributed
mobile computing system and accelerates DNN computations.
MoDNN uses only mobile platforms (LG Nexus 5, $350) and
partitions a DNN using input partitioning within each layer,
especially by relying on sparsity in the matrix multiplications.
However, MoDNN does not consider real-time performance be-
cause its most optimized system with four Nexus-5 devices has
a latency of six seconds. DDNN [13] also aims to distribute the
computation in local devices. However, in its mechanism, in ad-
dition to retraining the model, each sensor device performs the
first few layers in the network and the rest of the computation is
offloaded to the cloud system. Therefore, similar to [11], [12] is
dependent on the cloud. Table I provides a comparison of these
works with our method. Additionally, executing DNN models in
resource-constrained platforms has recently gained great atten-
tion from industry, such as ELL library [14] by Microsoft and
Tensorflow Lite [19] by Google. However, these frameworks
are still in development and have limited capability. Our work
is different because (i) we study cost-efficient distributed robot
systems, (ii) we examine conditions and methods for real-time
processing of DNNSs, and (iii) we design a collaborative system
with many devices.

III. BACKGROUND

In the past three years, the use of DNN for robots has become
increasingly popular. This not only includes robot perception

(b) VGG16 model.

of objects [30], [31] and actions [32], but also robot action
policy learning [33], [34] using DNNs. This section gives an
overview of common DNN layers and models we use for ob-
ject and action recognitions. DNN models are composed of
several layers stacked together for processing inputs. Usually,
first layers are convolution layers (conv), which consist of a
set of filters that are applied to a subset of inputs by sweeping
each filter (i.e., kernel) over them. To introduce non-linearity,
activation layers (act) apply a non-linear function, such as
ReLU, f(x) = max(0,z), allowing a model to learn complex
functions. Sometimes, a pooling layer, such as a max pooling
layer (maxpool),downsamples the output of a prior layer and
reduces the dimensions of data. Finally, a few fully connected
(dense) layers (fc) perform a linear operation of weighted
summation. A fully connected layer of size n has n set of weights
and creates an output of size n. Among the mentioned layers,
fc and conv layers are among the most compute- and data-
intensive layers [35]. Hence, our technique aims at alleviating
the compute cost and overcoming the resource barriers of these
layers by distributing their computation.

Image-based Object Recognition Models: Recent advance-
ments in computer vision [36] have allowed us to achieve high
accuracies and surpass human-level accuracy [37]. Computer
vision models extensively use conv layers, the heavy compu-
tations of which are not ideal for low-power robots [38]. For
demonstration, we studied AlexNet [1] and VGG16 [22], the
models of which are shown in Fig. 3.

Action Recognition Model: Recognizing human activities and
classifying them (i.e., action recognition) in videos is a challeng-
ing task for DNN models. Such DNN models, while performing
still image classification, must also consider the temporal con-
tent in videos. We use the model of Ryoo et al. [4], which
consists of two separate recognition streams, spatial and tempo-
ral convolution neural networks (CNNs), the outputs of which
are combined in a temporal pyramid [39] and then fused in fully
connected layers to produce predictions.

HADIDI et al.: DISTRIBUTED PERCEPTION BY COLLABORATIVE ROBOTS

] 256
A PPy,
15 " Spatial g =) ;
- E | patia 5, 1T d ioutput
a o | i Stream QE’ c i E 1 15x256
a g ‘ ﬁﬁ @]] 5 2 g i

o+ > = £ E &

g £ 8

= ~ O

“H o Ln s Sl -

@ £ !
u 8 Temporal S 3 @ § ' Output
— — i -1 | Stream o i | 115x256
a 8 S] F v — § 1 X
n 5 f'—,ﬁiil I —
a S @ 256
Fig. 4. Temporal pyramid generation.

(a) Spatial Stream CNN: The spatial stream, similar to image
recognition models that classify raw still frames from the video
(i.e., images), is implemented with conwv layers. This model, as
input, takes a frame of size 16 x 12 x 3 (in RGB) and processes
it with three conv layers, each with 256 filters, the kernel
sizes of which are 5 x 5,3 x 3, and 3 x 3, respectively. Then,
features of each frame are summarized in a 256-element vector.
Since this stream processes still images, for training, we can use
any representative dataset, such as ImageNet [36], by adding a
dummy output dense layer.

(b) Temporal Stream CNN: The temporal stream takes opti-
cal flow as input, which explicitly describes the motion between
video frames (we use Farenback [40] algorithm). In other words,
for every pixel at a position (u;, v;) at time ¢, the algorithm finds
a displacement vector d; for each pair of consecutive frames,
ord; = (d¥,d}) = (urrar — us, Vi ar — vr). We compute the
optical flow for 10 consecutive frames and stack their (d} , d}) to
create an input with the size of 16 x 12 x 20. Subsequently, the
data is processed with three conv layers, each with 256 filters,
the kernel sizes of which are 5 x 5, 3 x 3, and 3 X 3, respec-
tively. Finally, the features are summarized in a 256-element
vector. By adding a dummy output dense layer, we can train the
temporal stream with any video dataset, such as HMDB [41].

(c) Temporal Pyramid: To generate a single representation
from the two streams, a single spatio-temporal pyramid [39] is
generated for each video. Fig. 4 depicts the steps of generating
a four-level temporal pyramid from a video. Such a pyramid
structure of maxpool layers creates an output with a fixed
size that is agnostic to the duration of videos. For each stream,
15 maxpool layers with different input ranges generate a 15 x
256 output. Finally, the data with size 2 x 15 x 256 is processed
by two fc layers with sizes of 8192, and an fc layer with the
size of 51 outputs HMDB classes.

IV. DISTRIBUTING DNN

In this section, we examine our distribution and paralleliza-
tion methods for computation of a DNN model over multiple
low-power robots (i.e., devices). We examine this problem in
the context of real-time data processing, which means a contin-
uous stream of raw data is available. Our goal is to reduce the
effective process time per input data. As terminology, a fask is
the processes that are performed on input data by a layer or a
group of consecutive layers. We introduce data parallelism and
model parallelism (inspired by concepts in GPU training [42]),
which are applicable to a task. Data parallelism is duplicating
devices that perform the same task, or share the same model
parameters. Model parallelism is distributing a task, which is
dividing the task into sub parts and assigning them to additional
devices. Thus, in model parallelism, since the parameters of the
model are divided among devices, the parameters are not shared.

3711

Arbitrary Task

Assignments; 2o/t TaskB TaskC (" DataParallelism: || Model Parallelism:
! 3 Part 1
' Task B Task B Part1
! Input 1252 output 1] | ™ EES output 1
] 9 ol ® 1o}
! o igi © o gl 8
S5 8 8.8 8
N
E e "i0! ™o o 1T
z o 0, o o .
z [©] 0! @ (] b]
g o 2 o .
L Y | e
]
[} Input2 TaskE Output 2 Input 1 ’aj,\ Omﬂpun
2 10 @ % [
® 101 o o !]
e_,i10i o o_ ! !
s s5ie gisie
@ 10} o ¢ 101 o
Input Task B Output Task B ® [) .

Fig. 5. Model and data parallelism for task B on two devices.
TABLE II
RASPBERRY PI 3 SPECIFICATIONS [25]
CPU 1.2 GHz Quad Core ARM Cortex-A53
Memory 900 MHz 1 GB RAM LPDDR2
GPU No GPGPU Capability
Price $35 (Board) + $5 (SD Card)
Idle (No Power Gating) 1.3W
Copover %100 Utilization 6.5 W
onsumption Averaged Observed 3w
M Inference (Single Device) Data Parallelism @ Model Parallelism w6 Devices
51
® 2
a1
0
512 1024 2048 4096 8192 10240 12288 14336 16384
Size of the fc layer
Fig. 6. Performance (i.e., throughput) speedup of model and data parallelism

on two Raspberry Pis executing an fc layer.

Fig. 5 depicts model and data parallelism of task B, an ar-
bitrary task, for two devices in an example DNN with three
layers. Data parallelism basically performs the same task on
two independent inputs, while in model parallelism, one input
is fed to two devices that perform half of the computations. To
create the output, a merge operation is required (for now, we as-
sume inputs are independent, see Section V-C). Implementing
data parallelism starts with assigning each newly arrived data
to devices. However, performing model parallelism requires a
knowledge of deep learning. In fact, the effectiveness of model
parallelism depends on factors such as the type of a layer, input
and output sizes, and the amount of data transfer. Furthermore,
the performance is tightly coupled with the computation balance
among devices, whereas, in data parallelism, the computations
are inherently balanced. We investigate these methods for fc
and conv layers since these layers demand the most computa-
tions and resources.

Fully Connected Layer: In an fc layer, the value of each
output is dependent on the weighted sum of all inputs. To apply
model parallelism to this layer, we can distribute the compu-
tation of each output while transmitting all the input data to
all devices. Since the model remains the same, such a distribu-
tion does not require training new weights. Later, when each
subcomputation is done, we need to merge the results for the
consumption of the next layer. As an example of how model and
data parallelism affect the performance, we examine various fc
layers, the input sizes of which are 7,680, but with different
output sizes. For each layer, we measure its performance (i.e.,
throughput) on a Raspberry Pi 3 (Table II). Fig. 6 illustrates

3712

(i) Gather Data on Environment and DNN Model

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

Task Assignments

,,,,,,,,,,,,,,,,,,, N ¢ Behavior Models ",
DNN Layers i) ;

> & ey

DNN Model

Communication

and Bandwidth

| (iii) Generate Task Assignments

for {1...n} devices

i} Devices (n) |

Latency

Profiling Hardware Phase |

Fig. 7. Steps for generating task assignments in our solution.

B Model Parallelism
Two Devices

M Inference (Single Device) Data Parallelism

Speedup
S B N
ochmrimin

o

7
7
7
7
v
7
v
G
ZIMLZ

20 40 60 480 500

Number of conv layer filters

Fig. 8. Performance speedup of model and data parallelism on two Raspberry
Pis executing a conv layer.

the performance of model and data parallelism normalized to
performing the inference on a single device. As we see, for fc
layers larger than 10240, model parallelism performs better. In
fact, after examining the performance counters of processors,
we find that processors start using the swap space for fc lay-
ers larger than 10240. Since in model parallelism a layer is
distributed on more than one device, we reduce memory foot-
print and avoid swap space activities, which results in speedups
greater than 2 X.

Convolution Layer: Since computations between the filters
of a conv layer are independent, distributing the computations
has various forms, such as distributing filters while copying the
input, dividing input while copying all filters, or a mix of these
two. In fact, such methods of distributions are already integrated
in many machine learning frameworks to increase data reuse and
therefore decrease execution time. To gain insights, we examine
a series of conv layers with the input size of 200 x 200 x 3 and
the kernel size of 5 x 5, with different numbers of filters in Fig. 8.
As seen, the performance of data parallelism is always better
than that of model parallelism, because while model parallelism
pays the high costs of merging and transmitting the same inputs,
for data parallelism, frameworks optimize accesses better for
high data reusability.

V. PROPOSED SOLUTION

A. Task Assignments

To find a close to optimal distribution for each DNN model,
given the number of devices in the system, we devise a so-
lution based on profiling. Our goal is to increase the number
of performed inferences per second, or I PS. As discussed in
Section IV, profiling is necessary for understanding the perfor-
mance benefits of data and model parallelism. In other words,
we must consider whether assigning more than one task to any
device will cause significant slowdown because of the limited
memory resource or if data or model parallelism with its over-
heads, such as data transmits and merges, increases IPS. In our
solution, Fig. 7, first, for each layer, we profile execution times
and memory usages of its original, model-parallelism, and data-
parallelism variants. For each hardware system, the profiling is
performed offline and only once for creating this data. Second,
our solution takes the target DNN model, number of devices, and
communication overhead (a regression model of latency based
on the data size). Finally, using gathered data, we generate task
assignments based on the flow of Algorithm 1.

Environment and DNN Model Inspection

| Task Assignment Phase | Distributaion

Algorithm 1: Task Assignment Algorithm.

1: function TaskAssignment(dnn, n,, 4, , COMM, MeMy;)
Inputs: dnn: DNN model in form of layers[type, size,
inputeizc s 6]
N ez Maximum number of the devices
comm: Communication overhead model
(comm(sizeqata))
memg; ... Device memory size

2: L := EXTRACT_MODEL_TO_LAYERS(dnn)
3: for n from 1 to n,,, 4, : do
4: tasksfina[n| == @
5: for n from 1 to n,, 4, :do
6: TG, noFit := FIND_INITIAL_TASKGROUP(L,
memsize)
7: if sizeof(T'G) > n then
8: tasks[n] =COMBINE_TASKS(T'G, mem; .,
Nmaxs n)
9: if sizeof(T'G) = n then
10: tasks[n] = TG
11: if sizeof (T'G) < n or noFit == T'rue then
12: while sizeof (TG) # n do
13: taskyariant := &
14: for every t € T'G: do
15: [taskyariant] +=
PROFILED_VARIANTS(%, comm)
16: tQSkreplaced, taskpew =
SELECT_LOWEST([taskyariant])
17: TG =TG — taskyepiaced + taskyew
18: tasksfinai[n| = TG
19: return tasksfinq

In this algorithm, the function in line 2 extracts the model
input, dnn, into layers, L, while also accounting for buffer-
ing requirements (i.e., sliding windows > 1, see Section V-C).
Required extra buffers should be specified by the user in /3. Be-
cause of the possibility that during execution some devices are
inactive, busy, or have more than one input, we generate task
assignments offline for all the possible number of devices (e.g.,
one, two, ..., total number of devices). For every number of
devices, n, we create a dictionary ofthe node’s name to its tasks,
tasksrinqi[n], and initialize it in Line 4 to the empty set. Then,
from Line 5, we start a for loop for generating task assignments
for the n number of devices. Since we generate all of the task
assignments for any number of devices offline, our system can
dynamically change the number of devices without the cost of
computing a new assignment. To do so, first, the function in
Line 6 generates an initial tasks group, T'G, from L, such that
every entity in T'G fits in memy; .. of our devices. Basically, the
function starts from the first layer while using the profiled data
and creates a group ofconsecutive layers until they cannot fit in
the memy; .., and then moves on for creating the next group. (If
asingle layer does not fit in the memory, noF'it flag is set for that
entity in T'G.) Then, based on the number of initial tasks groups,

HADIDI et al.: DISTRIBUTED PERCEPTION BY COLLABORATIVE ROBOTS

sizeof(TG), the algorithm changes T'G by adding or remov-
ing tasks until all n nodes are utilized, or sizeof(T'G) = n. If
sizeof(T'G) > n, it means current tasks need more devices-
than what the system has, so we have to co-locate some tasks
together and pay the overhead of task reloads. Hence, the func-
tion in Line 8 tries to combine two consecutive tasks(two tasks
such that one produces data and the other consumes it directly)
that togetherhave the lowest memory consumption across all
possible consecutive tasks and performs the process until the
tasks fit on n devices. This is because lowest memory consump-
tion is directly related to the lower reloading time of tasks to the
memory. If sizeof (TG) < n (or noF'it is set), the function in
Line 15 uses the profiled data and the communication model,
comm, to estimate the execution time of new task variants,
taskyariant, for all variants of the task,that is, original, model-
and data-parallelism variants. Then, Line 16 chooses the variant
with the lowest execution time across all possible variants for all
tasks and outputsthe to-be-replaced task (task,¢piaccq) and the-
selected variant (task,.,,). Finally, Line 17 updates T'G. This
process continues inthe while loop (Line 12) until we utilize all
available devices, or sizeof(T'G) = n. In this algorithm, since
performance gain and communication overhead are estimations,
optimality is not guaranteed. However, since task assignment is
not in the critical path, we can fine-tune assignments before
deployment (fine-tuning is not performed in our experiments).

B. Dynamic Communication

In our solution, devices need to communicate with each other
efficiently for transmitting data and commands. We use Apache
Avro [43], a remote procedure call (RPC) and data serialization
framework in our solution. The RPC capacity of Avro enables
us to request a service from a program located in another device.
In addition, Avro’s data serialization capability provides flexible
data structures for transmitting and saving data during process-
ing while preserving its format. Therefore, a device may offload
the results of a computation to another device and initiate a new
process. To effectively identify all devices, each device has a
local copy of a shared IP address table from which its previ-
ous and next set of devices and its assigned task are identified.
Furthermore, to adapt to the dynamics of the environment, a
master device may update the IP table based on the generated
task assignments. Similar to any network, we allocated a buffer
of incoming data on all the devices. Whenever a buffer is almost
full, the associated device (i) sends a signal to the previous de-
vices, which permits them to drop some unnecessary input data
(i.e., reducing sampling frequency), and (ii) sends a notification
the master device. Afterward, the master device, based on such
notification and the availability of devices, may update the IP
table to achieve better performance (in our experiments, updates
stop real-time processing for <minute).

C. Sliding Window

Our action recognition model processes a whole video for
each inference. However, in reality, the frames of a video are
generated by a camera (30 FPS). To adapt a model for real-time
processing, we propose the use of a sliding window over the in-
put and intermediate data, whenever needed, while distributing
the model. For instance, the temporal stream accepts an input of
optical flows from 10 consecutive frames, so a sliding window
of size 10 over the recent inputs is required. In a sliding window,
whenever new data arrives, we remove the oldest data and add

3713

10 spatial [
LN} =
-2, : E pyramid 1
|:> 73 256 elements 424 spatial
_______ i 25 spatial | = |
w > er one
g e ’ @ P i 26 spatial —=|
£ Spatial Stream #1-10 temporal [
= ———
!
2 i 15-24
£ En g
#1524 temporal
Ten _f#16-25 i 16— 25 temporal | o |
=]
frames P 256 elements | T 17 =26 temporal | s |
Recorder Node | | T i perten
s Temporal stream | meS ¢
4 : frame number Temporal Pyramid & Dense Layers

Fig. 9. Sliding window for an example system of eight devices. While some
tasks require sliding window, with different sizes, others may not need it.

TABLE III
HPC MACHINE SPECIFICATIONS

CPU 2x 2.00GHz 6-core Intel E5-2620
Memory 1333 MHz 96 GB RAM DDR3
GPU Titan Xp (Pascal) 12GB GDDRS5X
Total Price $3500
Idle 125W
Power %100 Only-CPU Utilization | 240 W
Consumption %100 Only-GPU Utilization | 250 W

TABLE IV
NVIDIA JETSON TX2 SPECIFICATIONS [44]

2.00GHz Quad Core ARM Cortex-A57

CPU 2.00GHz Dual Denver 2
Memory 1600 MHz 8 GB RAM LPDDR4
GPU Pascal Architecture - 256 CUDA Core
Total Price $600
Idle (Power Gated) 5SW
c Power %100 Utilization I5W
onsumption Averaged Observed 9.5W

the new data to the sliding window. Note that to order arriving
data, a unique tag is assigned to each raw data during recording
time. Fig. 9 illustrates this point with an example of eight devices
in a system. The recorder device keeps a sliding window of size
10 to supply the data, while the devices that process spatial and
temporal streams do not have a sliding window buffer. On the
other hand, since the temporal pyramid calculation requires a
spatial data of 15 frames and temporal data of 25 frames, the last
device keeps two sliding window buffers with different sizes.
We can extend the sliding window concept to other models that
have a dependency between their inputs to create a continuous
data flow. Furthermore, the sliding window is required to enable
data and model parallelism. This is because a device needs to
order its input data while buffering arrived unordered data.

VI. EVALUATION

We evaluate our method on distributed Raspberry-Pi-
based [25] (Table II) robot (GoPiGo [24]). Furthermore, we
compare our results with two localized implementations: (i) a
high-performance (HPC) machine (Table III) and (ii) Jetson
TX2 [44] (Table IV). For all implementations, we use Keras
2.1 [45] with the TensorFlow GPU 1.5 [46]. We measure power
consumption of all modules, except mechanical parts, with a
power analyzer. A local WIFI network with the measured band-
width of 62.24 Mbps and a measured client-to-client latency of
8.83 ms for 64 B is used. We use a measured communication
model of ¢ = 0.0002d + 0.002, in which ¢ is latency (seconds)

3714
OModel & Weights -
9 Temporal [
Temporal | Spatial =)
Spatial | Maxpool q
Maxpool [Dense |
q [————]
Dense i 1
Not Possible D 1/2!
pense (1/2) ense (1/2))
o zlo 4'0 s'o 0 o5 1 15 2
Time (s) Memory (GB)
() (b)

Temporal T 036
Spatial o034
Maxpool | 0.011
Dense |
Dense (1/2) | ——— 3.63
S

Temporal [——70.199
Spatial [~ 0.192
Maxpool | 0.0052
Dense |
Dense (1/2) [———70728

0 0.5 1 0 2 4
Time (s) Energy (J)
(c) (d)

Fig. 10. (a) Loading time, (b) memory usage, (c) time per inference, and
(d) energy per inference of general tasks in action recognition on a
Raspberry Pi.

and d is the data size (kB). All trained weights are loaded to
each robot’s storage, so each robot can be assigned to any task.

A. Single Robot

Since a single robot has limited memory, it usually cannot
handle the execution of all the tasks efficiently because for per-
forming any computation, data should be loaded to memory
from storage. Fig. 10(a) and 10(b) show the loading time and
memory usage of general tasks in the action recognition model.
The memory requirement of dense layers is larger than 1 GB, so
a single robot needs to store and load intermediate states (i.e.,
activations of a layer) to its storage, which incurs high delays.
To gain insight, we even try a dense layer with half-sized di-
mensions of the original one, with 15% lower accuracy. Fig. 10
shows that, in this case, even with a negligible computation time,
the overhead of loading each task is high for real-time process-
ing. Even when assuming zero loading time, as in Fig. 10(c)
and 10(d) depict for energy and inference time, the inference
time of the half-sized f c layer is more than 0.7 seconds, while its
energy per inference is 10x larger than that of spatial/temporal
streams. Hence, in such an implementation, we still cannot pro-
cess data in real time.

B. Action Recognition

In the action recognition model, the recording robot also com-
putes optical flow, the computation of which is not heavy (e.g.,
4 ms for 100 frames using the method in [40]). Each robot man-
ages a sliding window buffer, explained in Section V-C, the size
of which is dependent on the model and data parallelism of the
previous robot and the input of the next robot. As discussed in
the previous section, a single robot is unable to process data
efficiently in real time. Hence, for demonstration, we perform
distributed perception utilizing various systems, as shown in
Fig. 11, while measuring IPS, energy consumption, and end-
to-end latency (Figs. 12, 13, and 14, respectively).! Our first
system has five robots, Fig. 11(a), for which the final fc lay-
ers are distributed. Note that the systems with fewer than five
robots are bounded by reloading time, and do not experience
significant improvements in performance.

From eight robots, Fig. 11(b), our method performs model
parallelism on both fc layers, creating two 4096 fc layers per

'We evaluate these experiments and make the source code publicly available
in this artifact [47].

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

Node B Task Node D Tasks

Node A Task Spatial CNN Maxpool
ode A Tasks £c 1 (8k) Node E Tasks
Recording ® (8k)
Optical Flow Q» © ® (51)
Node C Task ©
Temporal CNN
(@)
Tasks of D Task of F
i fc_2(4k
— % Task of H
Recording Ov © v:e . m
Optical Flow 0””;0
© ® 80,
Task of C Tasks of E
Task of G
Temporal CNN Maxpool
fc_1(4k) fc_2(4k)
(b)
Task of B& C Tasks of F ko H
Spatial CNN

Maxpool
£ 180 |7 £c_2(4ak)
'G) Task of)

Tasks of A

Recording
Optical Flow

Task of D & E

®

Tasks of G
Maxpool
£c_1(4k)

Tasks of H
= Task of J

focai |5, [fe2@0]
£o 104K |7 fc_2(4k)
%
LT

Task of L

fc_3(51)
8,
Tasks of | Task of K
Maxpool

Fig. 11. System architectures of action recognition. (a) Five robots: Exploiting
model parallelism for £c layers. (b) Eight robots: Exploiting model parallelism
for each fc layer. (c) 10 robots: Adding data parallelism for the two streams.
(d) 12 robots: Adding more data parallelism for the two streams.

Task of |

Tasks of A

Recording
Optical Flow

Tasks of £, F, & G

Temporal CNN

d

6935 1528 509 1000

2

s 10 7.69

g ¢ 5.34

IF 4 1.97 1.67

-

g g = 0.02 =

(3

3 P S S B S A

E ¢ N g A o oF o° oF &
& & <¥ <¥F hd < ¥ [¥

System Architecture

._
N

Fig. Measured inference per second.

Latency of one Frame (s)
ok N W

System Architecture

Fig. 13. Measured end-to-end latency of one frame.

each layer. Furthermore, we are able to achieve 4.6 improve-
ment in the performance and exceed the performance of TX2,
shown in Fig. 12. In the 10-robot system, two more robots pro-
cess temporal and spatial streams exploiting data parallelism,
illustrated in Fig. 11(c). New frames and optical flows are as-
signed in a round-robin fashion to two robots (of each stream)
and are ordered using tags in subsequent robots. Finally, in the
12-robot system, more robots are assigned to process temporal
and spatial streams with data parallelism. In summary, in com-
parison with a single robot, we gain up to 90x energy savings

HADIDI et al.: DISTRIBUTED PERCEPTION BY COLLABORATIVE ROBOTS

O Static Energy

Dynamic Energy

orRNWRUIO

Energy per Inference (J)

System Architecture
(2)

239.7 O Total Energy

gié 10.15
g1 6.6
g
6
£ 3 [3'_47 2.06 3[_|81 234 253 265
g 2
a | ., M, M
> 0 ! } } | } } |
%
2 P2 & & & \"0
w @ c\b 1’\0 N @ < £ & N
& & <X <¥ hd < &

System Architecture

(®)

Fig. 14. Energy consumption per inference. (a) Measured static and dynamic
energy consumption per inference. (b) Measured total energy consumption per
inference.

Task of B Task of D Tasks of B & C Task of D

[fe1c20] fc 2 (ak) | | [CW Layers | Ifc 1(2k) |TaskofF
Tasks of A % @A fc_3 (1k)
Input Stream Taskof C Tasks of A Task of £ e
CNN Layers £c_1(2k) | Input Stream] | £c_1(2k)]
(a) (b)
Fig. 15. System architectures for AlexNet. (a) Four-device system. (b) Six-

device system.

and a speedup of 500x for IPS. As Figs. 12 and 13 depict,
although increasing the number of devices in a system also in-
creases the latency notably, we observe a performance gain in
IPS with a higher number of devices. This is because in both data
and model parallelism, the systems hide latency by distributing
or parallelizing tasks.

For the larger number of robots, we achieve not only similar
energy consumption with TX2 but also save energy in com-
parison with the HPC machine. Fig. 14(b) depicts that, except
for the TX2 with GPU, the energy consumption per inference
(i.e., Watt/performance) of systems with more than five robots
is always better than in other cases (up to 4.3 x and an average
of 1.5x). Note that in our evaluations, the power consumption
of the robot systems is inclined to higher energy consump-
tion because (i) in comparison with TX2, since each robot’s
Raspberry-Pi is on a development board, it has several unnec-
essary peripherals, the energy consumption of which increases
significantly with more robots, which is shown in static energy;
(i) TX2 is a low-power design with power gating capabilities
that gates three cores if not needed, but robots do not have such
capabilities; and (iii) the energy consumption of the robot sys-
tems also includes the energy for communication between the
devices and the wasted energy of powering an idle core during
data transmission.

C. Image Recognition

We apply our method to two popular image recognition
models, described in Section III. For AlexNet, Fig. 15(a) and
15(b) display the generated tasks for four- and six-robot sys-
tems, respectively. While in the four-robot system, model paral-
lelism is performed on the £c_1 layer, in the six-robot system,

3715

- ODynamic Energy O Static Energy H Total Energy
£ 8 =2 ~25
3 3 3 2
a 6 g1s 8 15
2g L i
8 £ 2
£ 2 505 <05
g 5
g o 50 z° ¢ @
= e @ £ o 13 S S &
& > \“3& oé& &2 \‘30\ \‘10\05‘c 5 g x\q N v°§‘ &
PN AP A R
() (®) (©)
Fig. 16. AlexNet: Measured IPS (a), static and dynamic energy consumption

(b), and total energy consumption (c). (a) IPS. (b) Dynamic and Static Energy.
(c) Total Energy.

Tasks of B, C,& D Tasks of E Task of F Tasks of B, C, D, E Task of J

F,G&H

fc_1(2k)
/g‘
3 4 ‘\ 1@ Task of L
O\ O fc 2 (4K)
Y| £ 3 (1K)

DX
‘g‘f’; ®
£c_1(2k)

QA E‘B

Tasks of A Task of H
Task of K

Input Stream|™kof6 fc 2 (4K) || TasksofA /
Block 1 ’m fe3 (AK) | /[1nput stream ®

(2) (b)

Fig. 17. System architectures for VGG16. (a) Eight-device system. (b) 11-
device system.

ODynamic Energy O Static Energy B Total Energy

T°
£ 14 =30 =50
S 1.2 = =
2 1 g 2] 40
g3 08 1 § 30

g]
o= 06 & 8 20
g o4 £10 £,
1 0.2 g 3
£ 0] s 0
= S P NN B o> O & €

S e 2 FES S g ¢ ¢ &
DR ST i
(a) (b) ()

Fig. 18. VGG16. (a) Measured IPS. (b) Static and dynamic energy consump-
tion. (c) Total energy consumption.

additional data parallelism is performed on conv layers. We
implement both systems and measure their performance and
energy consumption, shown in Fig. 16. Fig. 16(a) depicts a per-
formance increment by increasing the number of devices in a
system. In fact, the achieved performance of the six-robot sys-
tem is similar to the TX2 with CPU, and 30% worse than the
TX2 with GPU. Furthermore, as discussed in the previous sec-
tion, Fig. 16(b) shows that most of the energy consumption of
the Raspberry-Pi-based robots is because of the static energy
consumption.

VGG16 (Fig. 3(b)), in comparison with AlexNet, is more
computationally intensive [38]. To distribute the model, our
method divides the VGG16 model to several blocks of sequen-
tial conv layers. Fig. 17(a) and 17(b) depict the outcome of task
assignment for VGG16 with eight and 11 robots, respectively.
Our method for £c_1, since its input size is large, performs
model parallelism, while for fc_2 and fc_3, since their com-
putations are not a bottleneck, it assigns them to a single robot.
We measure the performance and energy consumption of both
systems and the TX2, shown in Fig. 18. When the number
of robots increases from eight to 11, we achieve 2.3x better
performance by reassigning all conve blocks to a robot and
performing more optimal data parallelism. In fact, compared to
the TX2 with GPU, the 11-robot system achieves comparable
IPS (15% degradation).

3716

VII. CONCLUSION

In this letter, we proposed a technique to harvest the com-
putational power of distributed robot systems by collaboration
to enable efficient real-time recognition. Our technique uses
model- and data-parallelism to effectively distribute computa-
tions of a DNN model among low-cost robots. We demonstrate
our technique with a system consisting of Raspberry-Pi3-based
robots by implementing a state-of-the art action recognition
model and two well-known image recognition models. For
future work, we plan to extend our work to heterogeneous robot
systems and increase the robustness of our technique.

(1

[2]

[3]

[4]

(3]

(6]

(7]

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Conf. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097-1105.

R. Collobert and J. Weston, “A unified architecture for natural language
Processing: Deep neural networks with multitask learning,” in Proc. Int.
Conf. Mach. Learn., 2008, pp. 160-167.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in Proc. Int. Conf. Learn. Repre-
sentations, 2015.

M. S. Ryoo, K. Kim, and H. J. Yang, “Extreme low resolution ac-
tivity recognition with multi-siamese embedding learning,” in Proc.
Assoc. Advancement Artif. Intell., Feb. 2018. [Online]. Available:
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16790

K. Simonyan and A. Zisserman, “Two-Stream convolutional networks for
action recognition in videos,” in Proc. Conf. Neural Inf. Process. Syst.,
2014, pp. 568-576.

Y. Wang, H. Li, and X. Li, “Re-architecting the on-chip memory sub-
system of machine-learning accelerator for embedded devices,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design, 2016, pp. 1-6.

Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression
of deep convolutional neural networks for fast and low power mobile
applications,” in Proc. Int. Conf. Learn. Representations, 2016.

B. McDanel, S. Teerapittayanon, and H. Kung, “Embedded binarized
neural networks,” in Proc. Int. Conf. Embed. Wireless Syst. Netw., 2017,
pp. 168-173.

S. Bang et al., “14.7 A 288 /W programmable deep-learning processor
with 270 KB on-chip weight storage using non-uniform memory hierarchy
for mobile intelligence,” in Proc. Int. Solid-State Circuits Conf., 2017,
pp. 250-251.

R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong, “RedEye:
Analog convnet image sensor architecture for continuous mobile vision,”
in Proc. Int. Symp. Comput. Archit., 2016, pp. 255-266.

Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” in Proc. 22nd ACM Int. Conf. Architectural
Support Program. Lang. Oper. Syst., 2017, pp. 615-629.

J. Hauswald, T. Manville, Q. Zheng, R. Dreslinski, C. Chakrabarti,
and T. Mudge, “A hybrid approach to offloading mobile image clas-
sification,” in Proc. Int. Conf. Acoust., Speech, Signal Process., 2014,
pp. 8375-8379.

S. Teerapittayanon, B. McDanel, and H. Kung, “Distributed deep neural
networks over the cloud, the edge and end devices,” in Proc. Proc. Int.
Conf. Distrib. Comput. Syst., 2017, pp. 328-339.

Microsoft, “Embedded Learning Library (ELL),” 2017. [Online]. Avail-
able: https://microsoft.github.io/ELL/. Accessed on: Oct. 11, 2017.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: Ima-
genet classification using binary convolutional neural networks,” in Proc.
Eur. Conf. Comput. Vision, 2016, pp. 525-542.

A.G.Howard et al., “Mobilenets: Efficient convolutional neural networks
for mobile vision applications,” arXiv:1704.04861, 2017.

S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krish-
namurthy, “MCDNN: An execution framework for deep neural networks
resource-constrained devices,” in MobiSys’16, pp. 123-136, 2016.
Facebook, “Caffe2Go: Delivering real-time Al in the palm of your
hand,” 2017. [Online]. Available: https://code.facebook.com/posts/
196146247499076/delivering-real-time-ai-in-the-palm-of-your-hand/.
Accessed on: Oct. 11, 2017.

Google, “Introduction to TensorFlow Lite,” 2017. [Online]. Available:
https://www.tensorflow.org/mobile/tflite/. Accessed on: Oct. 11, 2017.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and <0.5 MB model size,” arXiv:1602.07360, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. Conf. Comput. Vision Pattern Recognit.,2016,
pp. 770-778.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Representations,
2015.

C. Szegedy et al., “Going deeper with convolutions,” in Proc. Conf. Com-
put. Vision Pattern Recognit., 2015, pp. 1-9.

D. Industries, “GoPiGo Robot,” 2017. [Online]. Available: https:/
www.dexterindustries.com/gopigo3/. Accessed on: Feb. 22, 2018.

R. P. Foundation, “Raspberry Pi 3,” 2017. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/. Accessed
on: Oct. 11, 2017.

R. P. Foundation, “Raspberry Pi 3,” 2017. [Online]. Available: https://
www.raspberrypi.org/products/camera-module-v2/. Accessed on: Oct. 11,
2017.

NVIDIA, “NVIDIA TK,” 2017. [Online]. Available: http://www.
nvidia.com/object/jetson-tk I -embedded-dev-kit.html. Accessed on: Oct.
11,2017.

J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “MoDNN: Local
distributed mobile computing system for deep neural network,” in Proc.
Design Automat. Test Europe, 2017, pp. 1396-1401.

J. Dean et al., “Large scale distributed deep networks,” in Proc. Proc.
Conf. Neural Inf. Process. Syst., 2012, pp. 1223-1231.

J. Redmon and A. Angelova, “Real-time grasp detection using convo-
lutional neural networks,” in Proc. Int. Conf. Robot. Automat., 2015,
pp. 1316-1322.

D. Maturana and S. Scherer, “VoxNet: A 3D convolutional neural network
for real-time object recognition,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2015, pp. 922-928.

M. S. Ryoo, B. Rothrock, C. Fleming, and H. J. Yang, “Privacy-preserving
human activity recognition from extreme low resolution.” in Proc. Assoc.
Advancement Artif. Intell., 2017, pp. 4255-4262.

C. Finn and S. Levine, “Deep visual foresight for planning robot motion,”
in Proc. Int. Conf. Robot. Automat., 2017, pp. 2786-2793.

J. Lee and M. S. Ryoo, “Learning robot activities from first-
person human videos using convolutional future regression,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017. [Online]. Available:
https://ieeexplore.ieee.org/document/8014797/

S. Venkataramani et al., “Scaledeep: A scalable compute architecture
for learning and evaluating deep networks,” in Proc. Int. Symp. Comput.
Archit., 2017, pp. 13-26.

O. Russakovsky et al., “Imagenet large scale visual recognition challenge,”
Int. J. Comput. Vision, vol. 115, no. 3, pp. 211-252, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: sur-
passing human-level performance on Imagenet classification,” in Proc.
Int. Conf. Comput. Vision, 2015, pp. 1026-1034.

A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural
network models for practical applications,” arXiv:1605.07678, 2016.

J. Choi, W. J. Jeon, and S.-C. Lee, “Spatio-temporal pyramid matching
for sports videos,” in Proc. Annu. ACM Int. Conf. Multimedia Retrieval,
2008, pp. 291-297.

G. Farneback, Two-Frame Motion Estimation Based on Polynomial
Expansion. Berlin, Germany: Springer, 2003, pp. 363-370.

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB: A
large video database for human motion recognition,” in Proc. Int. Conf.
Comput. Vision, 2011, pp. 2556-2563.

A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep learning with COTS HPC systems,” in Proc. Int. Conf. Mach.
Learn., 2013, pp. 1337-1345.

T. A. S. Foundation, “Apache Avro,” 2017. [Online]. Available: https://
avro.apache.org. Accessed on: Oct. 11, 2017.

NVIDIA, “NVIDIA Jetson TX,” 2017. [Online]. Available: http:/www.
nvidia.com/object/embedded-systems-dev-kits-modules.html. Accessed
on: Oct. 11, 2017.

F. Chollet et al., “Keras,” 2015. [Online]. Available: https://github.
com/fchollet/keras

M. Abadi et al., “TensorFlow: Large-scale machine learning on heteroge-
neous systems,” 2015. [Online]. Available: https://www.tensorflow.org/
R. Hadidi, J. Cao, M. Woodward, M. S. Ryoo, and H. Kim, “Real-time
image recognition using collaborative IoT devices,” in Proc. Reproducible
Quality-Efficient Syst. Tournament Co-Designing Pareto-Efficient Deep
Learn., 2018, Art. no. 4.

https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16790
https://code.facebook.com/posts/196146247499076/delivering-real-time-ai -in-the-palm-of-your-hand/
https://code.facebook.com/posts/196146247499076/delivering-real-time-ai -in-the-palm-of-your-hand/
https://www.dexterindustries.com/gopigo3/
https://www.dexterindustries.com/gopigo3/
https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/camera-module-v2/
https://ieeexplore.ieee.org/document/8014797/
https://avro.apache.org
https://avro.apache.org
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
https://github.com/fchollet/keras

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

