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Abstract— Robots have access to an abundance of raw data.
They need to understand their environment to perform their
tasks and act upon local triggers. With the advancement
of deep neural networks (DNNs), robots, with the help of
powerful computing units, can now understand complex visual
features, such as humans and objects. Since DNNs have high
computation and power demands, to execute DNNs and achieve
high performance, a robot requires state-of-the-art or domain-
specific hardware. Although integrating such hardware in
several scenarios is economically and logically sound (such as
integrating GPUs in self-driving vehicles), for a handful of other
scenarios several constraints limit this integration. For instance,
unmanned aerial vehicles (UAVs) have a constraint on their
weight which limit their ability to carry high-capacity batteries.
Thus, we need a good understating of DNNs power consumption
on robots and UAVs. To understand the power consumption of
robots and UAVs that execute DNNs beside their operation, we
study a two-robot system with limited computing capabilities.
We utilize a framework that enables collaboration among
several low-power devices for enabling real-time execution of
DNNs. Our execution platform includes two iRobots, each of
which has been equipped with an additional Raspberry Pi 3, the
power source of which is the iRobot’s battery. By executing an
example DNN on interconnected Raspberry Pi 3s, while iRobots
are operating, we quantify and study the power consumption
effects of DNNs in our system.

Index Terms—Deep Learning in Robotics and Automation,
Distributed Robot System, Power Usage

I. INTRODUCTION

Robots rely on raw data that is derived from their en-
vironment and act upon it. They need to process this raw
information to extract useful data. With the emergence of
deep neural networks (DNNs) and popularity of machine
learning, we have been extending our capabilities to solve
traditionally challenging problems such as computer vision,
natural language processing, neural machine translation, and
video recognition [1]-[3]. These new capabilities are ex-
tremely beneficial for robots because robots are usually at
the forefront of the information that only could be compre-
hended by DNNs. While DNNs can aid robots tremendously,
executing DNNs requires intensive computation power and
access to a reliable source of energy. Therefore, in sev-
eral use-cases, robots are enhanced with domain-specific
or high-performance hardware to process DDNs. However,
integrating such costly hardware leads to more expensive
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robots. (sometimes in multiple factors of the initial cost;
for example, to add a high-performance GPU, which costs
hundreds of dollars.) The co-design of the robot hardware
for integrating the high-performance components usually
incurs the high cost of redesigning and thus creates a barrier
to execute DNNs directly on the robots. In addition, the
weight constraints of several robots, such as unmanned aerial
vehicles (UAV), limits their ability to carry large batteries
or high-performance GPUs. Therefore, although executing
DNNs on robots are greatly beneficial, a barrier caused
by manufacturing cost and the various constraints of some
robots/UAVs limits DNNs applicability.

In this short paper, to overcome the barrier of executing
DNNs on inexpensive or constrained robots/UAVs, we study
a scenario in which multiple low-power robots exist in an
environment. In this scenario, DNNs cannot be executed on
a single robot because of their high computational resource
and power demand. However, ideally, by sharing the com-
putational power of all the robots in the environment, we
can move one step closer to the execution of DNNs. There
have been several works to enable the execution of DNNs on
low-power robots, embedded devices, or Internet of things
(IoT) devices [6]-[13], such as collaborative computation
between edge devices and the cloud [14]-[16], or customized
mobile implementations [17]-[24]. For this work, we use
Hadidi et al. [11], [13] framework to collaboratively execute
AlexNet [25], an image-recognition DNN model, on two
iRobots [4]. As shown in Figure [I] each iRobot is equipped
with an additional Raspberry Pi 3 [5] that is connected
the iRobot’s battery through a voltage converter. To under-
stand the power consumption of executing DNNs on this
distributed robot system, we study the power consumption
of both iRobot and Raspberry Pi 3 in four cases: idle
(stationary robot), iRobot moving with no computation, DNN
execution while iRobot is stationary, and DNN execution
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Fig. 1: Two iRobot2 [4], equipped with two RPi3s [5].



while iRobot is moving. Since battery size is a constraining
factor in several robots and UAVs, by understanding the
power consumption of our system in several cases, we hope
to shed more light on the details of executing DNN5s in robots
and UAVs.

II. DISTRIBUTION AND SYSTEM
A. Distributing DNNs

In this paper, we use Hadidi et al. [11], [13] framework
that enables an efficient, local, and distributed computation
of DNNs close to the edge by using several resource-
constrained devices or robots. A single low-power robot
alone cannot handle all computations of DNNs [11]. Al-
though with some optimizations, such as weight prun-
ing [26], [27] and precision reduction [28]-[30], we can
run limited versions of the current models on robots, Hadidi
et al. solution is orthogonal to such techniques. Therefore,
these techniques can also be applied on top of the mentioned
solution. Since only one request exists in our environment,
to distribute the computation of the DNN, we need to use
model parallelism methods. Model parallelism is splitting the
computation of a DNN across multiple robots, whereas data
parallelism is processing the independent data concurrently.
Model parallelism methods for different DNN layers are
discussed in [12] extensively.

In summary, Hadidi et al. framework, either first pro-
files all the combinations [11] or uses real-time monitoring
tools [12] to find an optimal distribution of a DNN model.
Note that these methods are tailored toward single batch pro-
cessing since we have limited number of request in our target
environment (e.g., edge computation domains, UAVs, IoTs).
The methods study the memory and compute footprints for
each layer of a DNN model, and create an optimal work
distribution for the DNN model. The target performance of
the model is to reduce the latency of the model. Therefore, as
discussed in [12], the methods extensively use several model-
parallelism methods for fully-connected and convolution
layers. Next we describe the utilized DNN model. We choose
AlexNet because it is well-known. MobileNet models [19]
are also a good candidate for our systems. However, because
of their complex structure and large number of layers, we
were unable to find an optimal distribution at the time of
this submission. In fact, DNN choice is arbitrary in our
implementation since by using [12] method, we are able
to deploy any DNN model on our system. Therefore, the
optimizations for MobileNet models will help us speed up
the execution even more and are orthogonal to our work
distribution.

B. AlexNet DNN Model

In the 2012 ImageNet large-scale visual recognition chal-
lenge (ILSVRC), a challenge for image recognition task,
AlexNet [25] significantly outperformed all the prior com-
petitors and won the challenge with a deeper convolution
neural network (CNN) and more filters per layer. Figure [2]
illustrates the model of a single-stream AlexNet, which
consists of five convolution layers and three fully-connected

layers. The model that we use has around 40M parameters
(single-stream AlexNet).
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Fig. 2: AlexNet image-recognition model [25].

C. System Setup

We use two iRobot Roomba 600 as our robots, each of
which are equipped with one Raspberry Pi 3. The power
source of Raspberry Pi 3 is derived from iRobot’s battery
with a voltage converter. To control iRobot, we use iRobot
Create 2 Open Interface [31] to send serial commands from
the Raspberry Pi on top of it that is connected to iRobot’s
serial port. As our computation engines for executing DNNs
on each iRobot, we utilize Raspberry Pi 3s, the specification
of which is in Table [l On each Raspberry Pi, with the
Ubuntu 16.04 operating system, we use Keras 2.0 [32] with
the TensorFlow 1.0 [33] backend. To measure the power
consumption of a single Raspberry Pi, as shown in Figure |1}
we use a USB digital multimeter that logs measurements in
an excel file (every 1s). To measure the power consump-
tion of one robot, we use iRobot Open Interface to poll
iRobot’s battery voltage and amperage (every 100 ms) while
performing our experiments. All experiments are done for
approximately 3 minutes, including some idle time to show
the baseline.

Currently, Raspberry Pis doe not share the output from
DNN models with iRobots for path control. The current
system is built as a showcase to show collaboration between
robots. We plan to extend this system with a camera per
robot, so that Raspberry Pis can control iRobots using
the DNN model output. Our assumption in evaluation our
system was that each robot records it own images and for
processing uses collaboration. Therefore, each robot make its
own decisions. We plant to extend this decision making to a
collaborative decision since all the robots in an environment
partially share same prospective. Similarly, in case of a
connection failure, the data is loss. To solve this challenge,
we can utilize coded distribution [34].

TABLE I: The specification of Raspberry Pi 3 [5].

CPU 1.2 GHz Quad Core ARM Cortex-A53
Memory 900 MHz 1 GB RAM LPDDR2
GPU No GPGPU Capability

III. EXPERIMENTAL RESULTS
A. Raspberry Pi Power Consumption
For understanding how DNN distribution affects the power
consumption of the Raspberry Pi, in our first set of ex-

periments, we measure the power usage of Raspberry Pi.
In one experiment, as shown in Figure ff] we measure the
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Fig. 3: Power consumption of iRobot in (a) idle mode (stationary) and (b) in movement. Power consumption includes all

operations, motors, computer, and Raspberry Pi.
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Fig. 4: Power consumption of a single Raspberry Pi 3
executing whole AlexNet.

power consumption of a Raspberry Pi while it is executing
the whole AlexNet model. As seen, the average power
consumption is 1.95W during DNN execution. We have
also included some idle time in the figure to depict the
change. The performance of one Raspberry Pi for AlexNet is
1.25 inferences per second. Therefore, around 200 inferences
are done during our experiment. As a comparison, we also
execute AlexNet on two Raspberry Pis and measure the
power usage of one of them. The execution is performed
by dividing the AlexNet model and executing each half on
one Raspberry Pi. Figure [5 illustrates the trend in power
usage in this experiment. As seen, although the idle power
consumption of the Raspberry Pi is the same as the previous
experiment, the power consumption during DNN execution
is 1.53 W, less than that of the previous experiment. With
two Raspberry Pis, our performance is around 3 inference
per second, however, the power consumption of each single
device is less than the case in which one device performs
all the computations. This is because, with distribution,
(i) less computation are performed per device, (ii) fewer
memory operations are performed per device, (iii) each
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Fig. 5: Power consumption of a single Raspberry Pi 3
executing AlexNet in a distributed manner (total of two
Raspberry Pis).

device has some idle time as a result of communication
latency. Although as a whole system, the power consumption
of the distributed system has been increased (i.e., power
consumption one device with 1.95W versus two devices
each with 1.53 W, a total of 3.0 W), each individual device
consumes less power.

B. iRobot and Raspberry Pi Power Consumption

In this section, we present the results of both iRobot and
Raspberry Pi power consumption in several common cases.
As discussed, we equipped each iRobot with a Raspberry
Pi. We measure the power that is drawn from the iRobot’s
battery, which includes both power usage for powering
up the Raspberry Pi and iRobot’s movements. The first
case is when iRobot is in idle mode (no movement, or
stationary) with no computation. Figure [3a| illustrates the
power usage behavior in this case, which has an average
power consumption of 5.09 W. The frequent spikes (around
0.8 W) in the figure is because of iRobot’s frequent system
checks. To see how physical activity affects power usage,
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Fig. 6: Power consumption of iRobot in (a) idle mode (stationary) while executing AlexNet in distributed manner and (b)
in movement while executing AlexNet in distributed manner. Power consumption includes all operations, motors, computer,

and Raspberry Pi.

in Figure we measure the power consumption of iRobot
while moving. The movement profile is random and depends
on the environment and only the motors for movement are
activated. As seen, the average power consumption is 6.88 W,
around 1.8 W higher than the idle case. In addition, there are
spikes as large as 3 W in the graph. In comparison with the
idle case, in movement, the trend in power consumption is
less predictable and contains large spikes.

To measure the effects on executing DNNs on robots, we
execute AlexNet on the two Raspberry Pis in our system.
Figure [6a] illustrates the power consumption of one iRobot
in stationary mode, while it is performing the computation
of AlexNet (in a collaborative way with other iRobot). The
average power consumption, in this case, is 7.51 W, and we
have spikes around 2 W. Although the profile of power con-
sumption should be similar to what we saw in Figure[3] since
iRobot is not moving, the spikes are much larger than what
we observed. We believe this is because of the unreliability of
iRobot’s battery in its ability to sustain a constant current to
the Raspberry Pi or our circuitry in converting the voltage. In
summary, DNN execution increases the power consumption
from 6.88 W to 7.51 W, around 6% increase. Note that this
increase only accounts for the dynamic power consumption
for DNN execution. In fact, the addition of a Raspberry Pi
increases the static power consumption of the system around
41% (Derived from 3.5 W average idle power consumption
of iRobot with no Raspberry Pi, and 1.5W average power
consumption of Raspberry Pi).

Figure [6b] depicts the power consumption of one iRobot
in movement and while it is performing the computation for
AlexNet (in a collaborative way). This case is the closest case
to a real-world setting, in which the robot is acting on the

previous outcome of the DNN, while the DNN is performing
new computations. As seen, the average power consumption
is 9.35 W, an 85% increase compared to the idle case with no
computations. In some cases, the spikes are as large as 4.5 W.
Also, executing the DNN has caused the power consumption
to vary more frequently compared to the previous case with
movement but with no DNN computation (Figure [3b). Such
high spikes might limit Raspberry Pi capability in attaining
a high performance since low power delivery may lead to
different power saving settings in its CPU. To see the power
consumption trends in various cases, Table [lI| summarizes
our results. Note that all the results include the static power
consumption of both the iRobot and Raspberry Pi. As seen,
DNN execution increases power consumption around 2.5 W
(50% of the system in idle) and significantly increases the
strength of spikes.

To extrapolate performance gain and energy trends of
distributed computations on Raspberry Pis, we measure the
performance and energy consumption of two, four, and six
Raspberry Pis for AlexNet execution. Figure [/| depicts the
performance and energy numbers of Raspberry Pi systems
with two, four, and six number of interconnected devices.
As seen with more Raspberry Pis, we achieve better per-

TABLE II: iRobot average power consumptions.

Spike Strength

Case Average Power
Consumption (W) W)
Idle 5.1 0.8
Movement 6.9 3.0
% Idle 7.5 2
2 | Movement 9.4 4.5
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Fig. 7: The inferences per second (a) and power consumption
(b) of various systems.

formance. A decreasing trend is also observed in dynamic
energy consumption, similar to Figures [] and [5] However,
static energy consumption increases with the number of
devices. This is because each Raspberry Pi comes with
several components that are not necessary for us, and they
consume extra energy.

IV. CONCLUSION

In this short paper, we studied the effects of executing
DNNs in a distributed manner on the power consumption.
The computation of our DNN, AlexNet, is distributed on
Raspberry Pis that are mounted on iRobots and utilize its
battery for their power source. We measured that executing
DNNSs increases the power consumption of the system around
2.5 W or 50%, while increasing the spikes strengths in power
consumption. Moreover, we found out that increased number
of devices leads to less power consumption in a system,
which is beneficial for robots that have limited energy
sources or have limits on their total weight such as UAVs.
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