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Abstract— Recognition ability and, more broadly, machine
learning techniques enable robots to perform complex tasks
and allow them to function in diverse situations. In fact, robots
can easily access an abundance of sensor data that is recorded
in real time such as speech, image, and video. Since such data is
time sensitive, processing it in real time is a necessity. Moreover,
machine learning techniques are known to be computationally
intensive and resource hungry. As a result, an individual
resource-constrained robot, in terms of computation power and
energy supply, is often unable to handle such heavy real-time
computations alone. To overcome this obstacle, we propose a
framework to harvest the aggregated computational power of
several low-power robots for enabling efficient, dynamic, and
real-time recognition. Our method adapts to the availability
of computing devices at runtime and adjusts to the inherit
dynamics of the network. Our framework can be applied to
any distributed robot system. To demonstrate, with several
Raspberry-Pi3-based robots (up to 12) each equipped with
a camera, we implement a state-of-the-art action recognition
model for videos and two recognition models for images. Our
approach allows a group of multiple low-power robots to obtain
a similar performance (in terms of the number of images or
video frames processed per second) compared to a high-end
embedded platform, Nvidia Tegra TX2.

Index Terms— Deep Learning in Robotics and Automation,
Distributed Robot System

I. INTRODUCTION

The availability of larger datasets, improved algorithms, and
increased computing power is rapidly advancing the applica-
tions of deep neural networks (DNNs). This advancement has
extended the capabilities of machine learning to areas such as
computer vision [1], natural language processing [2], neural
machine translation [3], and video recognition [4], [5]. In
the meantime, robots have access to an abundance of data
from their environment and are in desperate need to extract
useful information for enhanced handling of complex situ-
ations. While robots can benefit tremendously from DNNs,
satisfying their intensive computation and data requirements
is a challenge for robots. These challenges are even exac-
erbated in resource-constrained devices, such as low-power
robots, mobiles, and Internet of things (IoT) devices, and a
significant amount of research efforts has been invested to
overcome them [6]–[10], such as collaborative computation
between edge devices and the cloud [11]–[13], or customized
mobile implementations [14]–[20]. Despite all these efforts,
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Fig. 1: Collaborative robots performing distributed inference.

scaling current DNNs to robots and processing generated
data in real time faces challenges due to limited computing
power and energy supplies in robots. Hence, in order to
handle current and future DNN applications that are more
resource hungry [21]–[23] and extract useful information
from raw data in a timely manner, creating an efficient
solution is critical.

Our main idea is to utilize the aggregated computational
power of robots in a distributed robot system to perform
DNN-based recognition in real time. Such collaboration
enables robots to take advantage of the collective computing
power of the group in an environment to understand the
collected raw data, while none of the robots would experi-
ence energy shortage. Although such collaboration could be
extended to a variety of systems, limited computing power
and memory, scarce energy resources, and tight real-time
performance requirements make this challenge unique to
robots. In this paper, we propose a technique for collabora-
tive robots to perform cost-efficient, real-time, and dynamic
DNN-based computation to process raw data (Figure 1). Our
proposed technique examines and distributes a DNN model
to gain high real-time performance, the number of inferences
per second. We explore both data parallelism and model
parallelism, where data parallelism consists of processing
independent data concurrently and model parallelism consists
of splitting the computation across multiple robots. For
demonstration, we use up to 12 GoPiGos [24], which are
Raspberry-Pi3-based [25] robots, each with a camera [26]
(Figure 2). As an example DNN, to detect an object and
related types of actions happening in an environment, we
implement a state-of-the-art action recognition model [4]
with 15 layers and two popular image recognition models,
AlexNet [1] and VGG16 [22].

The summary of our contributions in this paper is as
follows: (i) We develop a profiling-based technique to ef-
fectively distribute DNN-based applications on a distributed
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Fig. 2: Our GoPiGo distributed robot system.



TABLE I: Comparison with recent related work.
End-Compute

Device
Number

of Devices
Localized
Inference

Real-Time
Data Process

Partitioning
Mechanism

Model- & Data-
Parallelism

Runtime
Adaptability

Neurosurgeon [11] Tegra TK1 [27] 1 ✗ ✗ Inter-Layer ✗ ✗
MoDNN [28] LG Nexus 5 4 ✓ ✗ Intra-Layer ✗ ✗
DDNN [13] ✗ Many ✗ ✓ Inter-Layer Data Parallelism ✗
Our Method Raspberry Pi [25] Many ✓ ✓ Intra- & Inter-Layer Both ✓

robot system while considering memory usage, communica-
tion overhead, and real-time data processing performance.
(ii) We propose a technique that dynamically adapts to
the number of available collaborative robots and is able
to interchange between the robot, which inputs data, and
computational robots. (iii) We apply our technique on a
distributed robot system with Raspberry-Pi3-based hardware,
investigating a state-of-the-art action and two image recog-
nition DNN models.

II. RELATED WORK

Performing distributed perception with collaborative
robots is a new concept; however, various related research
to process DNN applications for real-time performance has
been done. One of the first papers to distribute computa-
tion is [29]; however, it investigates such distribution and
partitioning specific for training and not inference while
only focusing on high-performance hardware. A recent work,
Neurosurgeon [11], dynamically partitions a DNN model
between a single edge device (Tegra TK1, $200) and the
cloud for higher performance and better energy consumption.
Neurosurgeon does not study the collaboration between
edge devices and is dependent on the existence of a cloud
service. A similar study of partitioning the computations
between mobile and cloud is also done in [12] using the
Galaxy S3. Another work, MoDNN [28], creates a local
distributed mobile computing system and accelerates DNN
computations. MoDNN uses only mobile platforms (LG
Nexus 5, $350) and partitions a DNN using input partitioning
within each layer, especially by relying on sparsity in the
matrix multiplications. However, MoDNN does not consider
real-time performance because its most optimized system
with four Nexus-5 devices has a latency of six seconds.
DDNN [13] also aims to distribute the computation in local
devices. However, in its mechanism, in addition to retraining
the model, each sensor device performs the first few layers
in the network and the rest of the computation is offloaded
to the cloud system. Therefore, similar to [11], [12] is
dependent on the cloud. Table I provides a comparison of
these works with our method. Additionally, executing DNN
models in resource-constrained platforms has recently gained
great attention from industry, such as ELL library [14] by
Microsoft and Tensorflow Lite [19] by Google. However,
these frameworks are still in development and have limited
capability. Our work is different because (i) we study cost-
efficient distributed robot systems, (ii) we examine condi-
tions and methods for real-time processing of DNNs, and
(iii) we design a collaborative system with many devices.

III. BACKGROUND
In the past three years, the use of DNN for robots has become
increasingly popular. This not only includes robot perception
of objects [30], [31] and actions [32], but also robot action
policy learning [33], [34] using DNNs. This section gives
an overview of common DNN layers and models we use for
object and action recognitions. DNN models are composed of
several layers stacked together for processing inputs. Usually,
first layers are convolution layers (conv), which consist
of a set of filters that are applied to a subset of inputs by
sweeping each filter (i.e., kernel) over them. To introduce
non-linearity, activation layers (act) apply a non-linear
function, such as ReLU, f (x) = max(0,x), allowing a model
to learn complex functions. Sometimes, a pooling layer,
such as a max pooling layer (maxpool), downsamples the
output of a prior layer and reduces the dimensions of data.
Finally, a few fully connected (dense) layers (fc) perform
a linear operation of weighted summation. A fully connected
layer of size n has n set of weights and creates an output of
size n. Among the mentioned layers, fc and conv layers
are among the most compute- and data-intensive layers [35].
Hence, our technique aims at alleviating the compute cost
and overcoming the resource barriers of these layers by
distributing their computation.
Image-based Object Recognition Models: Recent advance-
ments in computer vision [36] have allowed us to achieve
high accuracies and surpass human-level accuracy [37].
Computer vision models extensively use conv layers, the
heavy computations of which are not ideal for low-power
robots [38]. For demonstration, we studied AlexNet [1] and
VGG16 [22], the models of which are shown in Figure 3.
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Fig. 3: Image recognition models.

Action Recognition Model: Recognizing human activities
and classifying them (i.e., action recognition) in videos is
a challenging task for DNN models. Such DNN models,
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Fig. 4: Temporal pyramid generation.

while performing still image classification, must also con-
sider the temporal content in videos. We use the model of
Ryoo et al. [4], which consists of two separate recognition
streams, spatial and temporal convolution neural networks
(CNNs), the outputs of which are combined in a temporal
pyramid [39] and then fused in fully connected layers to
produce predictions.
(a) Spatial Stream CNN: The spatial stream, similar to im-
age recognition models that classify raw still frames from
the video (i.e., images), is implemented with conv layers.
This model, as input, takes a frame of size 16x12x3 (in
RGB) and processes it with three conv layers, each with
256 filters, the kernel sizes of which are 5x5, 3x3, and 3x3,
respectively. Then, features of each frame are summarized
in a 256-element vector. Since this stream processes still
images, for training, we can use any representative dataset,
such as ImageNet [36], by adding an output dense layer.
(b) Temporal Stream CNN: The temporal stream takes op-
tical flow as input, which explicitly describes the motion
between video frames (we use Färenback [40] algorithm). In
other words, for every pixel at a position (ut ,vt) at time t,
the algorithm finds a displacement vector dt for each pair of
consecutive frames, or dt = (dx

t ,d
y
t ) = (ut+∆t −ut ,vt+∆t −vt).

We compute the optical flow for 10 consecutive frames
and stack their (dx

t ,d
y
t ) to create an input with the size of

16x12x20. Subsequently, the data is processed with three
conv layers, each with 256 filters, the kernel sizes of which
are 5x5, 3x3, and 3x3, respectively. Finally, the features are
summarized in a 256-element vector. By adding a dummy
output dense layer, we can train the temporal stream with
any video dataset, such as HMDB [41].
(b) Temporal Pyramid: To generate a single representation
from the two streams, a single spatio-temporal pyramid [39]
is generated for each video. Figure 4 depicts the steps of
generating a four-level temporal pyramid from a video. Such
a pyramid structure of maxpool layers creates an output
with a fixed size that is agnostic to the duration of videos.
For each stream, 15 maxpool layers with different input
ranges generate a 15x256 output. Finally, the data with size
2x15x256 is processed by two fc layers with sizes of 8192,
and an fc layer with the size of 51 outputs HMDB classes.

IV. DISTRIBUTING DNN

In this section, we examine our distribution and paral-
lelization methods for computation of a DNN model over
multiple low-power robots (i.e., devices). We examine this
problem in the context of real-time data processing, which
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Fig. 5: Model and data parallelism for task B on two devices.

means a continuous stream of raw data is available. Our
goal is to reduce the effective process time per input data.
As terminology, a task is the processes that are performed
on input data by a layer or a group of consecutive layers. We
introduce data parallelism and model parallelism (inspired
by concepts in GPU training [42]), which are applicable to
a task. Data parallelism is duplicating devices that perform
the same task, or share the same model parameters. Model
parallelism is distributing a task, which is dividing the task
into sub parts and assigning them to additional devices. Thus,
in model parallelism, since the parameters of the model are
divided among devices, the parameters are not shared.

Figure 5 depicts model and data parallelism of task B,
an arbitrary task, for two devices in an example DNN with
three layers. Data parallelism basically performs the same
task on two independent inputs, while in model parallelism,
one input is fed to two devices that perform half of the
computations. To create the output, a merge operation is
required (for now, we assume inputs are independent, see
§V-C). Implementing data parallelism starts with assigning
each newly arrived data to devices. However, performing
model parallelism requires a knowledge of deep learning.
In fact, the effectiveness of model parallelism depends on
factors such as the type of a layer, input and output sizes, and
the amount of data transfer. Furthermore, the performance is
tightly coupled with the computation balance among devices,
whereas, in data parallelism, the computations are inherently
balanced. We investigate these methods for fc and conv
layers since these layers demand the most resources.
Fully Connected Layer: In an fc layer, the value of each
output is dependent on the weighted sum of all inputs. To
apply model parallelism to this layer, we can distribute the
computation of each output while transmitting all the input
data to all devices. Since the model remains the same, such
a distribution does not require training new weights. Later,
when each subcomputation is done, we need to merge the
results for the consumption of the next layer. As an example
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of how model and data parallelism affect the performance,
we examine various fc layers, the input sizes of which are
7,680, but with different output sizes. For each layer, we
measure its performance (i.e., throughput) on a Raspberry Pi
3 (Table II). Figure 6 illustrates the performance of model
and data parallelism normalized to performing the inference
on a single device. As we see, for fc layers larger than
10,240, model parallelism performs better. In fact, after
examining the performance counters of processors, we find
that processors start using the swap space for fc layers larger
than 10,240. Since in model parallelism a layer is distributed
on more than one device, we reduce memory footprint and
avoid swap space activities to get speedups greater than 2x.
Convolution Layer: Since computations between the filters
of a conv layer are independent, distributing the compu-
tations has various forms, such as distributing filters while
copying the input, dividing input while copying all filters,
or a mix of these two. In fact, such methods of distributions
are already integrated in many machine learning frameworks
to increase data reuse and therefore decrease execution time.
To gain insights, we examine a series of conv layers with
the input size of 200x200x3 and the kernel size of 5x5,
with different numbers of filters in Figure 8. As seen, the
performance of data parallelism is always better than that
of model parallelism, because while model parallelism pays
the high costs of merging and transmitting the same inputs,
for data parallelism, frameworks optimize accesses better for
high data reusability.

V. PROPOSED SOLUTION

A. Task Assignments

To find a close to optimal distribution for each DNN model,
given the number of devices in the system, we devise a
solution based on profiling. Our goal is to increase the
number of performed inferences per second, or IPS. As
discussed in §IV, profiling is necessary for understanding
the performance benefits of data and model parallelism.
In other words, we must consider whether assigning more
than one task to any device will cause significant slowdown
because of the limited memory resource or if data or model
parallelism with its overheads, such as data transmits and
merges, increases IPS. In our solution, Figure 7, first, for

each layer, we profile execution times and memory usages
of its original, model-parallelism, and data-parallelism vari-
ants. For each hardware system, the profiling is performed
offline and only once for creating this data. Second, our
solution takes the target DNN model, number of devices,
and communication overhead (a regression model of latency
based on the data size). Finally, using gathered data, we
generate task assignments based on the flow of Algorithm 1.

Algorithm 1 Task Assignment Algorithm.
1: function TASKASSIGNMENT(dnn,nmax,comm,memsize)

Inputs: dnn: DNN model in form of layers[type, size, inputsize, β ]
nmax: Maximum number of the devices
comm: Communication overhead model (comm(sizedata))
memsize: Device memory size

2: L := EXTRACT MODEL TO LAYERS(dnn)
3: for n from 1 to nmax: do
4: tasks f inal [n] := ∅
5: for n from 1 to nmax: do
6: T G, noFit := FIND INITIAL TASKGROUP(L, memsize)
7: if sizeo f (T G)> n then
8: tasks[n] =COMBINE TASKS(T G, memsize, nmax, n)
9: if sizeo f (T G) = n then

10: tasks[n] = T G
11: if sizeo f (T G)< n or noFit == True then
12: while sizeo f (T G) ∕= n do
13: taskvariant := ∅
14: for every t ∈ T G: do
15: [taskvariant ] += PROFILED VARIANTS(t, comm)
16: taskreplaced , tasknew = SELECT LOWEST([taskvariant ])

17: T G = T G− taskreplaced + tasknew

18: tasks f inal [n] = T G
19: return tasks f inal

In this algorithm, the function in line 2 extracts the model
input, dnn, into layers, L, while also accounting for buffering
requirements (i.e., sliding windows> 1, see §V-C). Required
extra buffers should be specified by the user in β . Because
of the possibility that during execution some devices are
inactive, busy, or have more than one input, we generate task
assignments offline for all the possible number of devices
(e.g., one, two, ..., total number of devices). For every
number of devices, n, we create a dictionary of the node’s
name to its tasks, tasks f inal [n], and initialize it in Line 4
to the empty set. Then, from Line 5, we start a for loop
for generating task assignments for the n number of devices.
Since we generate all of the task assignments for any number
of devices offline, our system can dynamically change the
number of devices without the cost of computing a new
assignment. To do so, first, the function in Line 6 generates
an initial tasks group, T G, from L, such that every entity
in T G fits in memsize of our devices. Basically, the function
starts from the first layer while using the profiled data and
creates a group of consecutive layers until they cannot fit in



the memsize, and then moves on for creating the next group.
(If a single layer does not fit in the memory, noFit flag is
set for that entity in T G.) Then, based on the number of
initial tasks groups, sizeo f (T G), the algorithm changes T G
by adding or removing tasks until all n nodes are utilized, or
sizeo f (T G) = n. If sizeo f (T G) > n, it means current tasks
need more devices than what the system has, so we have to
co-locate some tasks together and pay the overhead of task
reloads. Hence, the function in Line 8 tries to combine two
consecutive tasks (two tasks such that one produces data and
the other consumes it directly) that together have the lowest
memory consumption across all possible consecutive tasks
and performs the process until the tasks fit on n devices. This
is because lowest memory consumption is directly related
to the lower reloading time of tasks to the memory. If
sizeo f (T G)< n (or noFit is set), the function in Line 15 uses
the profiled data and the communication model, comm, to
estimate the execution time of new task variants, taskvariant ,
for all variants of the task, that is, original, model- and data-
parallelism variants. Then, Line 16 chooses the variant with
the lowest execution time across all possible variants for all
tasks and outputs the to-be-replaced task (taskreplaced) and
the selected variant (tasknew). Finally, Line 17 updates T G.
This process continues in the while loop (Line 12) until we
utilize all available devices, or sizeo f (T G) = n. In this algo-
rithm, since performance gain and communication overhead
are estimations, optimality is not guaranteed. However, since
task assignment is not in the critical path, we can fine-tune
assignments before deployment (fine-tuning is not performed
in our experiments).

B. Dynamic Communication

In our solution, devices need to communicate with each
other efficiently for transmitting data and commands. We use
Apache Avro [43], a remote procedure call (RPC) and data
serialization framework in our solution. The RPC capacity of
Avro enables us to request a service from a program located
in another device. In addition, Avro’s data serialization ca-
pability provides flexible data structures for transmitting and
saving data during processing while preserving its format.
Therefore, a device may offload the results of a computation
to another device and initiate a new process. To effectively
identify all devices, each device has a local copy of a shared
IP address table from which its previous and next set of
devices and its assigned task are identified. Furthermore,
to adapt to the dynamics of the environment, a master
device may update the IP table based on the generated task
assignments. Similar to any network, we allocated a buffer of
incoming data on all the devices. Whenever a buffer is almost
full, the associated device (i) sends a signal to the previous
devices, which permits them to drop some unnecessary input
data (i.e., reducing sampling frequency), and (ii) sends a
notification the master device. Afterward, the master device,
based on such notification and the availability of devices,
may update the IP table to achieve better performance (in our
experiments, updates stop real-time processing for ≤minute).
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Fig. 9: Sliding window for an example system of eight
devices. While some tasks require sliding window, with
different sizes, others may not need it.

TABLE II: Raspberry Pi 3 specifications [25].
CPU 1.2 GHz Quad Core ARM Cortex-A53

Memory 900 MHz 1 GB RAM LPDDR2
GPU No GPGPU Capability
Price $35 (Board) + $5 (SD Card)

Power
Consumption

Idle (No Power Gating) 1.3 W
%100 Utilization 6.5 W

Averaged Observed 3 W

C. Sliding Window

Our action recognition model processes a whole video for
each inference. However, in reality, the frames of a video
are generated by a camera (30 FPS). To adapt a model for
real-time processing, we propose the use of a sliding window
over the input and intermediate data, whenever needed, while
distributing the model. For instance, the temporal stream
accepts an input of optical flows from 10 consecutive frames,
so a sliding window of size 10 over the recent inputs is
required. In a sliding window, whenever new data arrives, we
remove the oldest data and add the new data to the sliding
window. Note that to order arriving data, a unique tag is
assigned to each raw data during recording time. Figure 9
illustrates this point with an example of eight devices in a
system. The recorder device keeps a sliding window of size
10 to supply the data, while the devices that process spatial
and temporal streams do not have a sliding window buffer.
On the other hand, since the temporal pyramid calculation
requires a spatial data of 15 frames and temporal data of 25
frames, the last device keeps two sliding window buffers with
different sizes. We can extend the sliding window concept
to other models that have a dependency between their inputs
to create a continuous data flow. Furthermore, the sliding
window is required to enable data and model parallelism.
This is because a device needs to order its input data while
buffering arrived unordered data.

VI. EVALUATION

We evaluate our method on distributed Raspberry-Pi-
based [25] (Table II) robot (GoPiGo [24]). Furthermore, we
compare our results with two localized implementations: (i) a

TABLE III: HPC machine specifications.
CPU 2x 2.00GHz 6-core Intel E5-2620

Memory 1333 MHz 96 GB RAM DDR3
GPU Titan Xp (Pascal) 12 GB GDDR5X

Total Price $3500

Power
Consumption

Idle 125 W
%100 Only-CPU Utilization 240 W
%100 Only-GPU Utilization 250 W



TABLE IV: Nvidia Jetson TX2 specifications [44].

CPU 2.00GHz Quad Core ARM Cortex-A57
2.00GHz Dual Denver 2

Memory 1600 MHz 8 GB RAM LPDDR4
GPU Pascal Architecture - 256 CUDA Core

Total Price $600

Power
Consumption

Idle (Power Gated) 5 W
%100 Utilization 15 W

Averaged Observed 9.5 W

high-performance (HPC) machine (Table III) and (ii) Jetson
TX2 [44] (Table IV). For all implementations, we use Keras
2.1 [45] with the TensorFlow GPU 1.5 [46]. We measure
power consumption of all modules, except mechanical parts,
with a power analyzer. A local WIFI network with the
measured bandwidth of 62.24 Mbps and a measured client-
to-client latency of 8.83 ms for 64 B is used. We use a
measured communication model of t = 0.0002d +0.002, in
which t is latency (seconds) and d is the data size (kB). All
trained weights are loaded to each robot’s storage, so each
robot can be assigned to any task.

A. Single Robot

Since a single robot has limited memory, it usually cannot
handle the execution of all the tasks efficiently because
for performing any computation, data should be loaded to
memory from storage. Figures 10a and b show the loading
time and memory usage of general tasks in the action
recognition model. The memory requirement of dense layers
is larger than 1 GB, so a single robot needs to store and load
intermediate states (i.e., activations of a layer) to its storage,
which incurs high delays. To gain insight, we even try a
dense layer with half-sized dimensions of the original one,
with 15% lower accuracy. Figure 10 shows that, in this case,
even with a negligible computation time, the overhead of
loading each task is high for real-time processing. Even when
assuming zero loading time, as in Figure 10c and d depict
for energy and inference time, the inference time of the half-
sized fc layer is more than 0.7 seconds, while its energy per
inference is 10x larger than that of spatial/temporal streams.
Hence, in such an implementation, we still cannot process
data in real time.
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inference, and (d) energy per inference of general tasks in
action recognition on a Raspberry Pi.
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Fig. 11: System architectures of action recognition.

B. Action Recognition

In the action recognition model, the recording robot also
computes optical flow, the computation of which is not
heavy (e.g., 4 ms for 100 frames using the method in [40]).
Each robot manages a sliding window buffer, explained in
§V-C, the size of which is dependent on the model and
data parallelism of the previous robot and the input of the
next robot. As discussed in the previous section, a single
robot is unable to process data efficiently in real time.
Hence, for demonstration, we perform distributed perception
utilizing various systems, as shown in Figure 11, while
measuring IPS, energy consumption, and end-to-end latency
(Figures 12, 13, and 14, respectively)1. Our first system
has five robots, Figure 11a, for which the final fc layers
are distributed. Note that the systems with fewer than five
robots are bounded by reloading time, and do not experience
significant improvements in performance.

From eight robots, Figure 11b, our method performs model
parallelism on both fc layers, creating two 4,096 fc layers
per each layer. Furthermore, we are able to achieve 4.6x im-
provement in the performance and exceed the performance of
TX2, shown in Figure 12. In the 10-robot system, two more
robots process temporal and spatial streams exploiting data

1We evaluate these experiments and make the source code publicly
available in this artifact [47].
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parallelism, illustrated in Figure 11c. New frames and optical
flows are assigned in a round-robin fashion to two robots (of
each stream) and are ordered using tags in subsequent robots.
Finally, in the 12-robot system, more robots are assigned to
process temporal and spatial streams with data parallelism.
In summary, in comparison with a single robot, we gain up
to 90x energy savings and a speedup of 500x for IPS. As
Figures 12 and 13 depict, although increasing the number of
devices in a system also increases the latency notably, we
observe a performance gain in IPS with a higher number of
devices. This is because in both data and model parallelism,
the systems hide latency by distributing or parallelizing tasks.

For the larger number of robots, we achieve not only
similar energy consumption with TX2 but also save energy
in comparison with the HPC machine. Figure 14b depicts
that, except for the TX2 with GPU, the energy consumption
per inference (i.e., Watt/performance) of systems with more than
five robots is always better than in other cases (up to 4.3x
and an average of 1.5x). Note that in our evaluations, the
power consumption of the robot systems is inclined to higher
energy consumption because (i) in comparison with TX2,
since each robot’s Raspberry-Pi is on a development board, it
has several unnecessary peripherals, the energy consumption
of which increases significantly with more robots, which is
shown in static energy; (ii) TX2 is a low-power design with
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power gating capabilities that gates three cores if not needed,
but robots do not have such capabilities; and (iii) the energy
consumption of the robot systems also includes the energy
for communication between the devices and the wasted
energy of powering an idle core during data transmission.

C. Image Recognition

We apply our method to two popular image recognition
models, described in §III. For AlexNet, Figures 15a and b
display the generated tasks for four- and six-robot systems,
respectively. While in the four-robot system, model paral-
lelism is performed on the fc 1 layer, in the six-robot sys-
tem, additional data parallelism is performed on conv layers.
We implement both systems and measure their performance
and energy consumption, shown in Figure 16. Figure 16a
depicts a performance increment by increasing the number
of devices in a system. In fact, the achieved performance
of the six-robot system is similar to the TX2 with CPU,
and 30% worse than the TX2 with GPU. Furthermore, as
discussed in the previous section, Figure 16b shows that most
of the energy consumption of the Raspberry-Pi-based robots
is because of the static energy consumption.

VGG16 (Figure 3b), in comparison with AlexNet, is more
computationally intensive [38]. To distribute the model, our
method divides the VGG16 model to several blocks of
sequential conv layers. Figures 17a and 17b depict the
outcome of task assignment for VGG16 with eight and 11
robots, respectively. Our method for fc 1, since its input
size is large, performs model parallelism, while for fc 2
and fc 3, since their computations are not a bottleneck, it
assigns them to a single robot. We measure the performance
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and energy consumption of both systems and the TX2, shown
in Figure 18. When the number of robots increases from eight
to 11, we achieve 2.3x better performance by reassigning all
conve blocks to a robot and performing more optimal data
parallelism. In fact, compared to the TX2 with GPU, the 11-
robot system achieves comparable IPS (15% degradation).

VII. CONCLUSION

In this paper, we proposed a technique to harvest the
computational power of distributed robot systems by collabo-
ration to enable efficient real-time recognition. Our technique
uses model- and data-parallelism to effectively distribute
computations of a DNN model among low-cost robots.
We demonstrate our technique with a system consisting of
Raspberry-Pi3-based robots by implementing a state-of-the
art action recognition model and two well-known image
recognition models. For future work, we plan to extend
our work to heterogeneous robot systems and increase the
robustness of our technique.
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