

# Distributed Perception by Collaborative Robots



**Interactive Talk** 

Ramyad Hadidi<sup>\*</sup>, Jiashen Cao<sup>\*</sup>, Matthew Woodward<sup>\*</sup>, Michael S. Ryoo<sup>\*\*</sup>, and Hyesoon Kim<sup>\*</sup>

\*Georgia Institute of Technology

Clickt\*\* EgoVid Inc.







# **Robots and Their Environment**

- Robots need to process lots of raw data in their environment.
  - Visual, Sounds, Temperature, ...
  - They need to understand it, to act upon it
  - For instance:
    - Drones that study an area after a disaster
    - Smart security system with lots of cameras
    - Swarm robots





# Deep Learning (DL) and Robots

- How they should process complex raw data?
  - Use deep learning!
  - It can help in many tasks:
    - Object detection
    - Scene recognition
    - Action recognition
    - Speech recognition







# **DL** Computation is Heavy

But DL models are computationally intensive and resource hungry specially for cheap robots.

An example of 3x dense layers on resource constrained device:





# **DL** Computation is Heavy

### But DL models are computationally





# **DL** Computation is Heavy

- So robots need the result fast and in real time!
- Then how resource-constrained robots can use DL to understand their surroundings?





# Let's Collaborate

- Usually, many cheap robots share their environment.
- Not all robots need to perform computations at same time.
- So What if they share their knowledge and help each other?





### **Our Work Overview**

We have proposed a technique to efficiently distribute DNN-based recognition.





### **Our Work Overview**

• We proposed an algorithm for deploying the distributed robot system only with Raspberry Pis.



(a) GoPiGo Robot



(b) Our Distributed Robot System

We used AlexNet, VGG16, and a video recognition model as example models.





# Outline

Introduction & Motivation

### **Data and Model Parallelism**

- Fully Connected and Conv Layers
- **Distributing DNN**
- Algorithm
- **System Evaluations**

**Conclusions** 

**Distributed Perception by Collaborative Robots** 

**IROS 2018** 



\_\_\_\_\_





### Model & Data Parallelism

Assume a custom DNN model, divided layer by layer:





Georgia Tech Comparch

12

### Data Parallelism



Data parallelism is providing the next input to multiple devices in a network.

**Distributed Perception by Collaborative Robots** 



### **Model Parallelism**



layer or group of layers over multiple devices.

**Distributed Perception by Collaborative Robots** 





# Fully Connected (FC) Layer

- Every output element is a summation of weighted inputs
- Each output element have its own set of weights
- A matrix multiplication





- Every output element is a summation of weighted inputs
- Each output element have its own set of weights
- A matrix multiplication



# Model & Data Parallelism for FC



**Fully Connected Layers**: Either data or model parallelism depending on size of the layer, input, and memory





# **Convolution Layer**

- Every channel in the output is derived from applying the same filter on the input
- Memory footprint size is smaller  $\rightarrow$  fit into device memory size
- Model parallelism: split based on filters, and one more merging node at the end





## Model & Data Parallelism for Conv



Number of conv layer filters

Distributed Perception by Collaborative Robots IROS 2018 Georgia Comparch



# Model & Data Parallelism for Conv



#### Convolution Layers: Data parallelism is better

**Distributed Perception by Collaborative Robots** 





# Outline

**Motivation** 

Background

- ML Models Overview
- Data and Model Parallelism
- Fully Connected and Conv Layers

### **Distributing DNN**

- Algorithm overview
- System Evaluations

**Conclusions** 







# Distributing a DNN Model





# Outline

- **Motivation**
- Background
- ML Models Overview
- Data and Model Parallelism
- Fully Connected and Conv Layers
- **Distributing DNN**
- Algorithm overview

### **System Evaluations**

**Conclusions** 







# Software & Hardware

### Software:

- Keras 2.1
  - With Tensorflow backend for Raspberry Pis
  - With Tensorflow-GPU backend for TX2
- Apache Avro for procedure call (RPC) and data serialization





Distributed Perception by Collaborative Robots





### Hardware Overview

#### Raspberry PI 3:

- Cheap and accessible platform
- Connected via a Wifi router
- No GPU
- **\$40**

#### Nvidia Jetson TX2:

- High-end embedded platform
- Has a GPU
- ♦ \$600





Moreover, we measured whole system power with a power analyzer

Distributed Perception by Collaborative Robots





# **AlexNet Distribution I**

#### Five-device system:





# **AlexNet Distribution II**

#### Six-device system:





### **AlexNet Results**



# VGG16 Distribution I

#### Nine-device system:





# VGG16 Distribution II







# Outline

| Motivation                             |  |
|----------------------------------------|--|
| Background                             |  |
| ML Models Overview                     |  |
| Data and Model Parallelism             |  |
| Fully Connected and Conv Layers        |  |
| Distributing DNN                       |  |
| <ul> <li>Algorithm overview</li> </ul> |  |
| System Evaluations                     |  |
| Conclusions                            |  |
|                                        |  |





# Conclusions

- We used a farm of Raspberry PIs for DNN processing
- Our technique achieves acceptable real-time performance
  - Compared to TX2 CPU, we achieve similar performance with 6 robots for AlexNet
  - 11 robots for VGG-16 compared to TX2 GPU
- **Future Work:**
- Study the robustness of such systems
- Apply our technique to more DNN models
- Implement our model on distributed robot systems







|      | 36   |
|------|------|
| <br> | <br> |



IISWC'17



| 37   |
|------|
| <br> |

Distributed Perception by Collaborative Robots

IROS 2018





Georgia 🌾 comparch



| 38   |
|------|
| <br> |

### **Backup Slides**

Distributed Perception by Collaborative Robots

\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_







Georgia Comparch

39

# Layers of ML Models

- Convolution: Applies several filters to the input
  - Compute bound, more locality
- Activation: Introduces non-linearity
  - e.g., ReLU  $f(x) = \max(0, x)$ , not compute intensive
- Fully Connected (Dense)
  - i.e., matrix multiplication, bandwidth bound
- Pooling
  - Reduces dimensions, simple doing max, average, and ... on a subset of input



# Image Recognition Models (I)

#### Single-stream AlexNet







### Image Recognition Models (II)

#### VGG16







# Vide Recognition Model

- i.e., Action recognition model
- Based on the two-stream model by Ryoo et al.<sup>[1]</sup>



M. S. Ryoo, K. Kim, and H. J. Yang, "Extreme Low Resolution Activity Recognition with Multi-Siamese Embedding Learning," in *AAAI'18*. IEEE, Feb. 2018.

**Distributed Perception by Collaborative Robots** 





### **Sliding Window**



**Distributed Perception by Collaborative Robots** 





# Algorithm

| 1:  | <b>function</b> TASKASSIGNMENT( <i>dnn</i> , <i>n</i> <sub>max</sub> , <i>comm</i> , <i>mem</i> <sub>size</sub> )                                                                                                                                                                                          |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | <b>Inputs:</b> <i>dnn</i> : DNN model in form of layers[type, size, <i>input<sub>size</sub></i> , $\beta$ ]<br><i>n<sub>max</sub></i> : Maximum number of the devices<br><i>comm</i> : Communication overhead model ( <i>comm(size<sub>data</sub></i> ))<br><i>mem<sub>size</sub></i> : Device memory size |
| 2:  | $L := \text{EXTRACT_MODEL_TO_LAYERS}(dnn)$                                                                                                                                                                                                                                                                 |
| 3:  | <b>for</b> <i>n</i> from 1 to $n_{max}$ : <b>do</b>                                                                                                                                                                                                                                                        |
| 4:  | $tasks_{final}[n] \coloneqq \emptyset$                                                                                                                                                                                                                                                                     |
| 5:  | for <i>n</i> from 1 to $n_{max}$ : do                                                                                                                                                                                                                                                                      |
| 6:  | $TG$ , $noFit := FIND_INITIAL_TASKGROUP(L, mem_{size})$                                                                                                                                                                                                                                                    |
| 7:  | if $size of(TG) > n$ then                                                                                                                                                                                                                                                                                  |
| 8:  | $tasks[n] = COMBINE_TASKS(TG, mem_{size}, n_{max}, n)$                                                                                                                                                                                                                                                     |
| 9:  | if $size of(TG) = n$ then                                                                                                                                                                                                                                                                                  |
| 10: | tasks[n] = TG                                                                                                                                                                                                                                                                                              |
| 11: | if $sizeof(TG) < n$ or $noFit == True$ then                                                                                                                                                                                                                                                                |
| 12: | while $sizeof(TG) \neq n$ do                                                                                                                                                                                                                                                                               |
| 13: | $task_{variant} := \emptyset$                                                                                                                                                                                                                                                                              |
| 14: | for every $t \in TG$ : do                                                                                                                                                                                                                                                                                  |
| 15: | $[task_{variant}] += PROFILED_VARIANTS(t, comm)$                                                                                                                                                                                                                                                           |
| 16: | $task_{replaced}, task_{new} = \text{SELECT\_LOWEST}([task_{variant}])$                                                                                                                                                                                                                                    |
| 17: | $TG = TG - task_{replaced} + task_{new}$                                                                                                                                                                                                                                                                   |
| 18: | $tasks_{final}[n] = TG$                                                                                                                                                                                                                                                                                    |
| 19: | return tasks final                                                                                                                                                                                                                                                                                         |

Distributed Perception by Collaborative Robots

**IROS 2018** 





44



\_\_\_\_\_

45

### Hardware Overview

#### Raspberry PI 3:

- Cheap and accessible platform
- Connected via a Wifi router
- No GPU
- \$40

#### Nvidia Jetson TX2:

- High-end embedded platform
- Has a GPU
- ♦ \$600

| Table 1: 1                    | Table 1: Raspberry PI 3 specification                                                                                              |                       |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| CPU<br>Memory<br>GPU<br>Price | PU<br>mory1.2 GHz Quad Core ARM Cortex-A5.<br>900 MHz 1 GB RAM LPDDR2<br>PU<br>No GPGPU Capability<br>\$35 (Board) + \$5 (SD Card) |                       |  |
| Power<br>Consumption          | Idle (No Power Gating)<br>%100 Utilization<br>Averaged Observed                                                                    | 1.3 W<br>6.5 W<br>3 W |  |

| Table 2: Ny                  | Table 2: Nvidia Jetson TX2 specifications                                                                                                                            |                      |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| CPU                          | CPU2.00 GHz Dual Denver 2 +<br>2.00 GHz Quad Core ARM Cortex-A57Memory<br>GPU<br>Total Price1600 MHz 8 GB RAM LPDDR4<br>Pascal Architecture - 256 CUDA Core<br>\$600 |                      |  |
| Memory<br>GPU<br>Total Price |                                                                                                                                                                      |                      |  |
| Power<br>Consumption         | Idle (Power Gated)<br>%100 Utilization<br>Averaged Observed                                                                                                          | 5 W<br>15 W<br>9.5 W |  |

Moreover, we measured whole system power with a power analyzer

Distributed Perception by Collaborative Robots





# Video Recognition on Single PI





# Video Recognition Distributions (I)









### Video Recognition Distribution (II)





# Video Recognition Results (2)

#### Latency of one Frame (Seconds)





# Video Recognition Results (3)



Energy: