

Distributed Perception by Collaborative Robots

Spotlight Talk

Ramyad Hadidi^{*}, Jiashen Cao^{*}, Matthew Woodward^{*}, Michael S. Ryoo^{**}, and Hyesoon Kim^{*}

*Georgia Institute of Technology

** EgoVid Inc.

2

Deep Learning (DL) and Robots

- Robots need process lots of raw data.
 - Visual, Sounds, Temperature, ...
- To act, they need to understand their environment.
- How should they process complex raw data?
 - Use deep learning!

DL Computation is Heavy

- But deep neural network are computationally intensive and resource hungry.
 - Models have large memory footprint.
 - Latency for single image inference is high.
- Robots need the result fast and in real time!
- Then how can resource-constrained robots use DL to understand their surroundings?

IROS 2018

Let's Collaborate

- Usually resource-constraint robots share their environment.
- Not all robots need to perform computations at same time.
- So what if they share their knowledge and help each other?

Distributed Perception by Collaborative Robots

IROS 2018

5

Our Work Overview

- We have proposed a technique to efficiently distribute DNNbased models.
- We also have proposed an algorithm to deploy distributed models onto robots system with Raspberry Pis.

6

Results

- We distributed and deployed :
 - Two image recognition models (VGG16 and AlexNet)
 - One video recognition model

Georgia Comparch

7

Results (Cont'd.)

- We successfully deployed the distributed DNN system on up to 12 robots
- We got comparable results with a high-end embedded GPU platform, Nvidia Tegra TX2
 - Acceptable inference speed
 - Better energy consumption

IROS 2018