
LCP: A Low-Communication Parallelization
Method for Fast Neural Network Inference for IoT

Ramyad Hadidi∗∥, Bahar Asgari‡∥ Jiashen Cao†, Younmin Bae†, Da Eun Shim†, Hyojong Kim†,
Sung-Kyu Lim†, Michael S. Ryoo§, Hyesoon Kim†

∗Rain AI, †Georgia Tech, ‡University of Maryland College Park, §Google & Stony Brook University
∥This work was done when authors were affiliated with Georgia Tech.

Abstract—Deep neural networks (DNNs) have stimulated re-
search in diverse edge applications including robotics and
Internet-of-Things (IoT) devices. However, IoT-based DNN infer-
ence poses significant challenges due to resource constraints. Fur-
ther, as communication is costly, taking advantage of other avail-
able IoT devices by using data- or model-parallelism methods
is not an effective solution. We introduce a low-communication
parallelization (LCP) method to minimize communication over-
head in distributed IoT systems. LCP models consist of multi-
ple, largely-independent, narrow branches, providing enhanced
distribution and parallelization opportunities while reducing
memory and computational requirements. Implemented on AWS
instances, Raspberry Pis, and PYNQ boards, as well as a
customized 16mW 0.107mm2 ASIC @7nm chip, LCP models
yield maximum and average speedups of 56x and 7x, compared
to original models, which could be improved by incorporating
common optimizations such as pruning and quantization.

Keywords– IoT, DNN, Inference, Parallel, Distributed, FPGA

I. INTRODUCTION & MOTIVATION

Deep neural networks (DNNs) have revolutionized many fields
including Internet-of-things (IoT) systems. Yet, executing
computationally heavy DNN inference locally in isolated net-
works (e.g., smart homes, drones [1]) remains a challenge [2].
In these cases, acceptable accuracy, standalone operation,
and unified ownership are key. The conventional solution to
heavy DNN inference computations is cloud-based offloading.
However, this approach has limitations: unavailability (e.g.,
no Internet access), reliance on variable network latency, and
scalability issues. Also, privacy concerns and personalization
push for local inference. However, local inference demands
high resources, clashing with the energy and computational
constraints in IoT devices.
The Current Approach & Key Challenge: Existing methods
enable local DNN inference by distributing computations
among idle IoT devices using data- or model-parallelism. Data
parallelism improves throughput by duplicating the model on
each device for separate inferences, but requires concurrent
inputs. Model parallelism distributes the model across devices
for the same inference, but is limited by communication
overhead and inter-layer data dependencies. An ideal method
for IoT devices should minimize communication overhead
and memory and computation requirements per node, but no
existing distribution methods achieve all these goals.
Our Solution: To address the aforementioned challenge, we
propose a low-communication parallelization (LCP) method
that enables the following: (i) Reduces Communication: LCP
models replace a wide, deep model with several narrow ones,
reducing communication requirements as they only communi-
cate for input and pre-final activations (see Table I). (ii) Lowers
Compute & Memory Footprints: Fewer connections in LCP

TABLE I
METHODS FOR DISTRIBUTING INFERENCE COMPUTATIONS.

Data Model
Parallelism Parallelism Target LCP

Memory
Per Device DNN 1

n DNN 1
n DNN ≤ 1

n DNN

Communication Intermediates
Per Inference IN/OUT +IN/OUT IN/OUT ≈ IN/OUT

Computation
Per Device DNN 1

n DNN 1
n DNN ≤ 1

n DNN

DNN: Metrics associated with the entire model; n: Number of devices.

models lead to fewer parameters and lower computational de-
mands compared to model-parallelism counterparts (Table I).
(iii) Enables Inter-Layer Parallelism: The independent narrow
branches in LCP models allow for inter-layer parallelism,
unlike model parallelism which is restricted by inter-layer
dependencies. (iv) Recovers Accuracy Without Extra Parame-
ters: Any potential accuracy loss due to model splitting can
be recovered by slightly increasing the branch size, but this
still results in fewer overall parameters due to the reduction in
unnecessary communication. LCP operates in conjunction with
existing techniques like weight pruning and quantization that
decrease model computation demands. LCP facilitates model
distribution and parallelism in distributed systems, while other
techniques implement accuracy/performance tradeoffs on indi-
vidual nodes. These approaches can be applied to each branch
in our method (see §IV-C), meaning LCP complements them.
Experiments Overview: (1) We create and evaluate LCP
models using image-recognition DNNs on various datasets
(MNIST, CIFAR10/100, Flower102, and ImageNet) including
all MLPerf image-recognition models, resulting in a total of
53 training evaluations. (2) We implement our method on three
different distributed systems: a network of up to 10 Raspberry
Pis (RPis), two PYNQ boards, and up to eight AWS instances,
using RPis due to their widespread use in IoT applications. (3)
We assess the performance of LCP on customized hardware. In
addition to optimizing models based on hardware constraints,
we modify the TPU architecture to be latency-optimized,
suitable for IoT applications, and implement it on a Xilinx
FPGA. (4) We evaluate the area and power efficiency of our
tailored hardware using ASAP 7 nm for integration into IoT.
Contributions: Our contributions are as follows:
• We propose the first DNN parallelization to reduce the

communication overhead for distributed inference for IoT.
• We generate LCP models, with inter-layer parallelism for

fast inference at small memory and computation footprints.
• We investigate the impact of hardware/software co-design

on inference performance, by tailoring the hardware of
TPU for optimizing single-batch inference latency, and
implement it on a small FPGA and as a tiny 0.107mm2

low-power chip consuming only 16mW.

Ramyad
Author’s Copy



0
100
200
300
400

0
20
40
60
80

Le
Net

Cifa
rN

et

AlexNet

VGG-S

DenseNet-1
69

ResN
et50

ResN
et152

Ince
ptio

n v4

VGG16

GoogLe
Net

YOLO C3D

Bert-
Base

Bert-
La

rge

#P
ar

am
et

er
s (

1e
6x

)

#M
AC

 O
pe

ra
tio

ns
 (1

e9
x) #Params #MACs

>200G

Image Recognition Video Analytics/ Translation

Fig. 1. DNNs #MAC operations/inference and parameters.

II. CHALLENGES

We first explain inevitable resource limitation for executing
DNNs causing the single device Pareto frontier. Then, we
summarize current distribution methods and their limitations,
causing straggler problem and limited scope of parallelism.
Resource Limitation & Pareto Frontier: DNN mod-
els comprise numerous layers, with custom weights learned
during back-propagation training. In inference, feed-forward
computations use these static learned parameters on batched
inputs. The most resource-demanding layers, usually fully-
connected and convolution layers, possess a significant amount
of multiply-accumulate operations and parameter sizes as
shown in Figure 1. More recent models incorporate more
parameters and perform more computations for improved
feature understanding over their predecessors. In short, this
trend of modern models will inevitably surpass the capabilities
of any resource-constrained device.

IoT platforms face resource constraints. Figure 2 shows the
latency per image for state-of-the-art image recognition mod-
els on RPi, despite optimizations like pruning, quantization,
low-precision inference, and handcrafted models, optimized
for ARMv8 architectures using the ELL tool. The Pareto
frontier sets the upper limit of single-device performance.
High-accuracy models typically exhibit latencies above 400ms,
and in most cases, it exceeds 100ms. This situation worsens
with larger, more complex DNNs beyond image-recognition,
indicating the challenges in executing such computations on
a single IoT device. In other words, even after applying all
optimization techniques for DNNs, the single device Pareto
frontier limits the widespread applicability of DNNs in several
IoT domains necessitating distribution and parallelization.
Current Distribution Methods: (1) Data parallelism (Fig-
ure 3a) applies to independent inputs but does not serve IoT
environments due to its latency, throughput focus, and un-
changed per-node computation and memory footprint (Table I).
(2) Model-parallelism (Figure 3b) divides inference computa-
tions for the same request but suffers from communication

30

40

50

60

70

80

0 200 400 600 800 1000To
p-

1 
Ac

cu
ra

cy
  (

IL
SV

RC
20

12
)

Latency (ms) per Image on RPi3

Single Device
Pareto Frontier

Multiple Devices
Zero Communication 

Overhead
(Ideal)

Multiple Devices
Our Proposed 

Work
(LCP)

Multiple Devices
With Communication 

Overhead

Fig. 2. Latency-Accuracy Pareto Frontier – Single device: Latency per image
on RPi3 for ILSVRC models with the optimized platform-specific compilation
ELL tool. Multiple devices: Breaking the single device Pareto frontier, but
with significant communication overhead.

(a) Data Parallelism (b) Model Parallelism

(c) Hierarchical — SplitNet (d) This Work — LCP

Fig. 3. Overview of distribution/parallelism methods.

overhead and single-chain dependency that limits parallelism
scope. Figure 4 presents a simple example for distributing
a fully connected (fc) layer, illustrating two extremes of
model parallelism: Input and output splitting. Although model
parallelism reduces the compute and memory footprint per
node; the single-chain dependency between consecutive layers
limits the parallelism scope within a single inference and
causes communication overhead. (3) SplitNet [3] (Figure 3c)
manually splits the model based on dataset semantics in inter-
mediate to final layers, leading to issues including imbalanced
workload and high communication overhead.
Communication Overhead & Limited Parallelism: Current
distribution methods suffer from high communication over-
head and limited parallelism due to single-chain dependency
between layers. This results in straggler problems, especially
in wireless IoT devices. For instance, Figure 5 shows latency
in a distributed system of six RPis executing AlexNet with
model parallelism. Average delay is approximately twice as
long as the bounded computing time. Figure 6a illustrates
the interconnections and communication overhead in VGG-S
with model parallelism. Despite compression techniques, the
number of connections remains unchanged.

The single-chain dependency between consecutive layers
limits the available parallelism that could be harvested by the
aforementioned methods. The limitation is that after the com-
putations of a single/few layer(s) are done, the intermediate
results must be merged before being forwarded to the next
layer. Such merging acts as a global barrier, which similar to
parallel programming, limits the gained performance speedup.
In summary, with parallel execution on multiple devices,
ideally, we could pass the frontier in Figure 2. However
current distribution methods are limited by the communication
overhead and the inherent inter-layer data dependency. The
next section proposes LCP models, which significantly reduce
communication and allow inter-layer parallelism.

Layer 1 Layer 2

Input

Output

Input Layer 2 Output Layer2

Output Splitting:

Input 1

Copy
Input 1

Part 1
Output 1

Part 2 
Output 1

Layer 3
Input Splitting:

Input
Part1

Input
Part 2 Partial 2 

Output 1

Partial 1 
Output 1

Model Parallelism

Fig. 4. Model parallelism for a fully connected layer.



600 800 1000 1200 1400 1600 1800 2000
0.000

0.001

0.002

0.003

0.004

Pr
ob

ab
ilit

y

  Arrival Time (ms)

  
  
  
  

Mean: 1019 ms
Stdev: 390.77 ms

Fig. 5. Histogram of prediction latencies on a six RPi system executing
AlexNet with model parallelism (§IV-B).

III. LCP FOR FAST INFERENCE

We propose the LCP method, which replaces a large model
with several narrow branches, communicating only for input
and pre-final activation (Figure 3d), as illustrated in Figure 6b
for a two-branch LCP model of VGG-S. This section de-
tails the LCP model design and its key low-communication
features, followed by a discussion on tailoring a systolic
architecture for IoT computing.

A. Tailoring Models

Design Procedure: Figure 7 describes the design procedure
of LCP models. We start by inputting the DNN model and
its per-layer memory and computation footprints. Similarly,
we input the specification of the hardware, such as memory
size, computation capability, and any overhead associated with
executing a DNN on our hardware. For instance, several
DNN frameworks have a memory overhead because of the
framework. The splitter procedure, described in Procedure 1,
in a while loop, splits the model, cuts the connection, and
measures the approximate footprints of each branch. The
DivisionFactor, a hyperparameter, defines the granularity of
division/splitting. Here, we assume the DivisionFactor of two,
but any number is viable. The loop exits when a single branch
is fitted on a device (both memory and computation wise). If
the number of devices is fewer than the number of branches,
the execution is still possible, but will be inefficient. Then,
we remove non-branch connections in a simple operation that
keeps only one connection per layer. The derived model from
the splitter is the split-only model. By training the split-only
model and testing it, we measure its accuracy. The split-only
models have fewer parameters and MAC operations than the
original models (Table II) in total. Hence, after distribution,
each branch has less computation and memory footprint than
its model-parallelism version.

As a result of fewer number of parameters and removing
several connections, a slight accuracy drop in split-only LCP
models is expected. Depending on the accuracy requirement of

VGG-S
with

Model-Paralleism

Communication Overhead (partially or fully)

(a)

VGG-S Split
in Two

Execution

(b)

Node 1

Node 2

Final Node

Around Half of parameters
and MACs 

Convolution Maxpool Fully ConnectedFlattenInput/Output

Fig. 6. VGG-S (a) model parallelism and (b) LCP versions.

Hardware 
Specification

…
…

…

… … … ……

… …

Adder Tree

Sy
st

ol
ic 

Ar
ra

y

Splitter

Desired
Accuracy?

Classification Layer Predictions

Te
st

 S
et

Testing

Yes

Split-Only 
Model

Training

Tr
ai

ni
ng

 
 S

et

Hyper-
parameter 
Tuning

Fa
tte

n 
+F

%
 

Ea
ch

 B
ra

nc
h

Final
LCP
ModelSplit-Fattened 

Model

No
Taskerror  "

<latexit sha1_base64="S7ToRRlKv+wuzhHUqwWapI0B2No=">AAACKXicbZDLSgNBEEV74ju+oi7dNAZBXIQZH+hSdONSIYlCJoSeTiVp0tM9dteIYcg/+B/u3eovuFO3bvwMO4+FJl4ouNyqoqgTJVJY9P0PLzczOze/sLiUX15ZXVsvbGxWrU4NhwrXUpvbiFmQQkEFBUq4TQywOJJwE3UvBv2bezBWaFXGXgL1mLWVaAnO0EWNwn6I8IBZmdluvzHyYIw2fRpKuKPhPTOQWCG1oo1C0S/5Q9FpE4xNkYx11Sh8h03N0xgUcsmsrQV+gvWMGRRcQj8fphYSxrusDTVnFYvB1rPhT32665ImbWnjSiEdpr83MhZb24sjNxkz7NjJ3iD8tzeAKlTbTtzH1mk9EypJERQfnW+lkqKmA2y0KQxwlD1nGDfCfUB5hxnG0cHNOzTBJIhpUz0oBYel4+uj4tn5GNIi2SY7ZI8E5ISckUtyRSqEk0fyTF7Iq/fkvXnv3udoNOeNd7bIH3lfP9XyqKk=</latexit>

Input 
Model

e.g., Memory Size

Fig. 7. Design Procedure of LCP models.

the task, we either fatten each branch by F%, a hyperparame-
ter, or output the resulted model. We assumed a maximum
of 3% bound for Taskerror. Fattening each branch by F%
is done by increasing the number of channels and output
features of convolution and fully connected layers of the split-
only model, respectively. Note that theses new split-fattened
models are fattened within each branch. Thus, even with a
high fattening percentage, still they have fewer parameters and
MAC operations than the original model (see Table III). When
the accuracy is in the acceptable error range for our task,
Taskerror, we output the model architecture and its weights.
It is expected that with similar number of parameters after
fattening, LCP models achieve the same level of accuracy [4].
We showcase LCP models in §IV-A covering MLPerf.
Key Features of LCP Models: LCP models are designed
by considering their underlying computation domain and have
the following key features to address the challenges discussed
in §II: (1) LCP models only communicate for input and pre-
final activation. Therefore, they significantly reduce commu-
nication overhead in a distributed system. Additionally, the
low communication load per inference helps with the straggler
problem. This is in contrast to model parallelism, which
highly depends on communication among all the intermediate
layers; (2) LCP models split the size of a layer, so the total
parameter size and computation complexity of the model
are reduced. Therefore, they require fewer parameter sizes,
less computation complexity, and no communication between
the nodes for intermediate layers. These lower memory and

Procedure 1: LCP Splitter (in Figure 7)
Input : DNN: Layer configurations [0 : n]

DNNMem, DNNMAC: DNN memory and computational footprints
Divisionfactor: Division Factor for splitting
DevMem, DevMAC: Hardware specification

Output: DNN: Layer configurations [1 : n]
1 Split(DNN, DNNMem, DNNMAC, Divisionfactor, DevMem, DevMAC)
2 Memfit ← 0; MACMac ← 0;
3 while not Memfit and not MACMac do
4 Memfit ← DNNMem < DevMem
5 MACMac ← DNNMAC < DevMAC
6 for layer [0..n− 1] in DNN do
7 layer.width ← layer.width/ Divisionfactor

8 RemoveNonBranchConnections(DNN)

9 return <DNN>



5-
La

ye
r

Pi
pe

lin
ed

LPDDR2
933Mb/s/pin

…
…

…

… … … ……

… …

length

Adder Tree

1

3

Memory

Width = 32

…

sum row col

sum row col

sum row col

sum row col

… …

+1
<latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit>

+1
<latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit>

+1
<latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit><latexit sha1_base64="iRmOnn5wklpQgw36mbTlsZzTQmI=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tFEISSSEGPRS8eq9gPaEPZbDft0s0m7E6EEvoPvHhQxKv/yJv/xm2bg7a+sPDwzgw78waJFAZd99sprK1vbG4Vt0s7u3v7B+XDo5aJU814k8Uy1p2AGi6F4k0UKHkn0ZxGgeTtYHw7q7efuDYiVo84Sbgf0aESoWAUrfVw4fXLFbfqzkVWwcuhArka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctKhpx42fzTafkzDoDEsbaPoVk7v6eyGhkzCQKbGdEcWSWazPzv1o3xfDaz4RKUuSKLT4KU0kwJrOzyUBozlBOLFCmhd2VsBHVlKENp2RD8JZPXoXWZdWzfF+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4I+fzB+DajOo=</latexit>

row = i;

if i < length; i + +;

row = 0;
<latexit sha1_base64="rHig/qUzns2S6PMbZhGSKU0jpwg=">AAACI3icbZBNSwMxEIazflu/qh69BIsgFMquCIpVEL14rGBV6JaSTWfb0Gx2SWbVstTf4sW/4sWDUrx48L+YfhzUOhB4eOcdJvMGiRQGXffTmZqemZ2bX1jMLS2vrK7l1zeuTZxqDlUey1jfBsyAFAqqKFDCbaKBRYGEm6BzPujf3IE2IlZX2E2gHrGWEqHgDK3UyB/p+J6eUFGmvp/zER4wE2HvURyPWIJqYbtXpqJYHFpGdnfAjXzBLbnDopPgjaFAxlVp5Pt+M+ZpBAq5ZMbUPDfBesY0Ci6hl/NTAwnjHdaCmkXFIjD1bHhjj+5YpUnDWNunkA7VnxMZi4zpRoF1Rgzb5m9vIP7Xq6UYHtYzoZIUQfHRojCVFGM6CIw2hQaOsmuBcS3sXylvM8042lhzNgTv78mTcL1X8ixf7hdOz8ZxLJAtsk12iUcOyCm5IBVSJZw8kRfyRt6dZ+fV6TsfI+uUM57ZJL/K+foGegKiPw==</latexit><latexit sha1_base64="rHig/qUzns2S6PMbZhGSKU0jpwg=">AAACI3icbZBNSwMxEIazflu/qh69BIsgFMquCIpVEL14rGBV6JaSTWfb0Gx2SWbVstTf4sW/4sWDUrx48L+YfhzUOhB4eOcdJvMGiRQGXffTmZqemZ2bX1jMLS2vrK7l1zeuTZxqDlUey1jfBsyAFAqqKFDCbaKBRYGEm6BzPujf3IE2IlZX2E2gHrGWEqHgDK3UyB/p+J6eUFGmvp/zER4wE2HvURyPWIJqYbtXpqJYHFpGdnfAjXzBLbnDopPgjaFAxlVp5Pt+M+ZpBAq5ZMbUPDfBesY0Ci6hl/NTAwnjHdaCmkXFIjD1bHhjj+5YpUnDWNunkA7VnxMZi4zpRoF1Rgzb5m9vIP7Xq6UYHtYzoZIUQfHRojCVFGM6CIw2hQaOsmuBcS3sXylvM8042lhzNgTv78mTcL1X8ixf7hdOz8ZxLJAtsk12iUcOyCm5IBVSJZw8kRfyRt6dZ+fV6TsfI+uUM57ZJL/K+foGegKiPw==</latexit><latexit sha1_base64="rHig/qUzns2S6PMbZhGSKU0jpwg=">AAACI3icbZBNSwMxEIazflu/qh69BIsgFMquCIpVEL14rGBV6JaSTWfb0Gx2SWbVstTf4sW/4sWDUrx48L+YfhzUOhB4eOcdJvMGiRQGXffTmZqemZ2bX1jMLS2vrK7l1zeuTZxqDlUey1jfBsyAFAqqKFDCbaKBRYGEm6BzPujf3IE2IlZX2E2gHrGWEqHgDK3UyB/p+J6eUFGmvp/zER4wE2HvURyPWIJqYbtXpqJYHFpGdnfAjXzBLbnDopPgjaFAxlVp5Pt+M+ZpBAq5ZMbUPDfBesY0Ci6hl/NTAwnjHdaCmkXFIjD1bHhjj+5YpUnDWNunkA7VnxMZi4zpRoF1Rgzb5m9vIP7Xq6UYHtYzoZIUQfHRojCVFGM6CIw2hQaOsmuBcS3sXylvM8042lhzNgTv78mTcL1X8ixf7hdOz8ZxLJAtsk12iUcOyCm5IBVSJZw8kRfyRt6dZ+fV6TsfI+uUM57ZJL/K+foGegKiPw==</latexit><latexit sha1_base64="rHig/qUzns2S6PMbZhGSKU0jpwg=">AAACI3icbZBNSwMxEIazflu/qh69BIsgFMquCIpVEL14rGBV6JaSTWfb0Gx2SWbVstTf4sW/4sWDUrx48L+YfhzUOhB4eOcdJvMGiRQGXffTmZqemZ2bX1jMLS2vrK7l1zeuTZxqDlUey1jfBsyAFAqqKFDCbaKBRYGEm6BzPujf3IE2IlZX2E2gHrGWEqHgDK3UyB/p+J6eUFGmvp/zER4wE2HvURyPWIJqYbtXpqJYHFpGdnfAjXzBLbnDopPgjaFAxlVp5Pt+M+ZpBAq5ZMbUPDfBesY0Ci6hl/NTAwnjHdaCmkXFIjD1bHhjj+5YpUnDWNunkA7VnxMZi4zpRoF1Rgzb5m9vIP7Xq6UYHtYzoZIUQfHRojCVFGM6CIw2hQaOsmuBcS3sXylvM8042lhzNgTv78mTcL1X8ixf7hdOz8ZxLJAtsk12iUcOyCm5IBVSJZw8kRfyRt6dZ+fV6TsfI+uUM57ZJL/K+foGegKiPw==</latexit>

i

<< 6
<latexit sha1_base64="Qk+Z99zGNHVInFMth/OH+LSF0AA=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhCswl0UtUgRtLGMaD4gOcLeZi9Zsrd37M4JIeQn2FgoYusvsvPfuEmu0MQHA4/3ZpiZFyRSGHTdb2dldW19YzO3ld/e2d3bLxwcNkycasbrLJaxbgXUcCkUr6NAyVuJ5jQKJG8Gw9up33zi2ohYPeIo4X5E+0qEglG00kOlctktFN2SOwNZJl5GipCh1i18dXoxSyOukElqTNtzE/THVKNgkk/yndTwhLIh7fO2pYpG3Pjj2akTcmqVHgljbUshmam/J8Y0MmYUBbYzojgwi95U/M9rpxhe+2OhkhS5YvNFYSoJxmT6N+kJzRnKkSWUaWFvJWxANWVo08nbELzFl5dJo1zyzkvl+4ti9SaLIwfHcAJn4MEVVOEOalAHBn14hld4c6Tz4rw7H/PWFSebOYI/cD5/AIPsjUo=</latexit>

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>

…

last?<latexit sha1_base64="Am01QNGuHYldM+tXqbNi+J8Orjs=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiieyiid4kevGIiQsksCHd0oWGbnfTzpoQwm/w4kFjvPqDvPlvLLAHBV/S5OW9menMC1MpDLrut1NYW9/Y3Cpul3Z29/YPyodHTZNkmnGfJTLR7ZAaLoXiPgqUvJ1qTuNQ8lY4upv5rSeujUjUI45THsR0oEQkGEUr+ZIavOmVK27VnYOsEi8nFcjR6JW/uv2EZTFXyOwE0/HcFIMJ1SiY5NNSNzM8pWxEB7xjqaIxN8FkvuyUnFmlT6JE26eQzNXfHRMaGzOOQ1sZUxyaZW8m/ud1Moyug4lQaYZcscVHUSYJJmR2OekLzRnKsSWUaWF3JWxINWVo8ynZELzlk1dJs1b1Lqq1h8tK/TaPowgncArn4MEV1OEeGuADAwHP8ApvjnJenHfnY1FacPKeY/gD5/MHvemOow==</latexit>

… Po
ol

in
g

Ac
tiv

at
io

n

M
em

or
y 

In
te

rfa
ce

4 5

Indexing Activation & Pooling

Sy
st

ol
ic

 A
rra

y

(a)

x

i

data t

To register
of next cell

To adder 
tree

To next 
buffer

(Initialization)

2
Cell

R1

De
pt

h 
= 

64

(b)

295µm

365µm

6

Fig. 8. Details of Tailored Hardware for IoT: (a) Microarchitecture overview,
and (b) Layout of ASIC design at 7nm.

computation footprints allow IoT devices to efficiently operate
within their limited resources (e.g., no swap space activities
due to limited memory); (3) LCP models replace the original
wide model with several narrow independent branches. Since
the computations of branches are independent, in contrast to
the single-chain of dependency in the original model, the scope
of parallelism is not limited with each layer anymore. In other
words, LCP models go beyond intra-layer parallelism.

B. Tailoring Hardware

Our work also optimizes fast inference under resource con-
straints and costly communication, using a tailored hardware
microarchitecture for DNNs. Our microarchitecture, shown
in Figure 8a, resembles systolic arrays in TPU and can be
implemented on small FPGAs or tiny low-power chips (i.e.,
0.107 mm2 as shown in Figure 8b). We arrange systolic array
cells in a 32x64 array ❶, reducing connections by linking
only the first row to memory. Each cell of the first row is
only connected to one data stream line ❷. To optimize data
flow, we partition the streaming operand into blocks of width
32, and split the stationary operand into 32×64 blocks. These
blocks are then sequentially mapped to memory addresses.
Our design, connected to LPDDR2 memory, results in a peak
throughput of 217.6,GOPs/s. We implement three key modifi-
cations: (1) Adder Trees: We use adder trees instead of MAC-
based arrays, reducing latency from O(n) to O(log(n)) ❸. (2)
Simple Indexing Logic: Our data-driven model, with indexing
logic ❹, manages data flow and operation end signals. By
comparing the length and index (i), the end of the operations
in the current layer is detected. The end of the current layer
signals the start of activation and pooling functions for that
layer ❺. (3) Buffering Stationary Operands: To reduce latency
and easy context switching, we integrate a buffer ❻ at each
cell for stationary operands.

IV. EXPERIMENTAL STUDIES

This section presents our experiments on generating LCP mod-
els and their deployment on RPi, TVM-enabled PYNQ boards,
and AWS instances. We also discuss FPGA implementation
for IoT and ASIC chip design evaluation. Details for each
experiment are provided at the start of their subsections.

A. Generating LCP Models

Training Specifications: We train all the models, including
the original model, from scratch to conduct a fair comparison
(normalization layers are included). The training is done with
an exponential learning rate with a decay factor of 0.94, initial
learning rate 1e−2, number of epoch per decay of two or
10, a dropout rate of 50%, and L2 regularization with weight
decay of 5e−4. We use ADAM optimizer with β1 = 0.9 and
β2 = 0.99. All biases are initialized to zeros and all weights
are initialized with a normal distribution of mean 0 and a
standard deviation of 4e−2. All of our models are trained until
the loss is flattened or least for 12 epochs. Test and accuracy
measurements are done on at least 10% of datasets that have
never been used in training to provide an unbiased evaluation
of the model. For LCP, the DivisionFactor, F , and ε, are 2%,
10%, and ≈3%, respectively.
Datasets: We use the following datasets: (1) MNIST, which
contains 70k grayscale handwritten 28x28 images in 10
classes; (2) CIFAR10, which contains 60k colored 32x32
images in 10 classes; (3) CIFAR100, which contains 60k
colored 32x32 images in 100 classes; (4) Flower102, which
contains 16,378 colored 224x224 images of flowers in 102
classes; and (5) ImageNet, which contains 1.33 M colored
224x224 images in 1000 classes.
Models: We use the representative model for each dataset,
LeNet, LeNet-FC, VGG-S, CifarNet, VGG16, AlexNetv2,
ResNet-18/50, and MobileNet. We cover all image-recognition
models in MLPerf. In total, for brevity, we only report 53
instances of training results to show LCP extensibility using
five datasets and nine models. Our additional results (not
reported) with ResNet-34, DenseNet, and DarkNet19 confirms
extendibility. Simple sequential DNNs serve as a basis to
confirm our method, while ResNets and MobileNet showcase
LCP with modern models.
Split-Only Models: For split-only models, we use
DivisionFactor of two, which results in models with two,
four, and eight branches. Except the width, defined as output
features in fully connected layers and the number of output
channels (i.e., filters) in convolution layers, the rest of the
parameters are similar to the original model as Splitter
Procedure 1 only touches widths. Table II lists the training
results. Figure 9a illustrates the accuracy difference of our
models, shown in Table II. As shown, the maximum accuracy
drop is around 5% for CifarNet. Note that this accuracy drop
occurs when we reduced the parameter size of our model
extensively (around 1/8). Figure 9b and c show reduction in
the number of parameters and computation compared with
the original DNN model; as seen, each split reduces both
by about splitfactor times. This is because each convolution



TABLE II
RESULTS OF SPLIT-ONLY LCP MODELS.

Model Name Dataset Layers† Top-1 # # MAC
Accuracy Param Opr.

LeNet-FC* MNIST 3fc 97.95 266.6k 266.2k

LeNet MNIST 2fc-3c-2p 98.76 61.7k 61.5k
LeNet-split2 MNIST 3fc-6c-4p 98.86 31.5k 30.5k
LeNet-split4 MNIST 5fc-12c-8p 98.93 16.1k 16.0k
LeNet-split8 MNIST 9fc-24c-16p 98.81 8.8k 8.5k

CifarNet* Cifar10 2fc-2c-2p-2n-1d 80.72 797.97k 14.79M

CifarNet Cifar100 2fc-2c-2p-2n-1d 52.87 815.34k 14.81M
CifarNet-split2 Cifar100 5fc-4c-4p-4n-2d 51.22 410.48k 9.33M
CifarNet-split4 Cifar100 9fc-8c-8p-8n-4d 48.48 208.05k 6.59M
CifarNet-split8 Cifar100 17fc-16c-16p-16n-8d 47.98 106.85k 5.23M

VGG-S* Cifar100 3fc-5c-2p-1n-2d 50.33 76.15M 154.09M

VGG-S Flower102 3fc-5c-3p-1n-2d 88.14 60.79M 1.85G
VGG-S-split2 Flower102 5fc-10c-6p-2n-4d 89.31 30.50M 1.01G
VGG-S-split4 Flower102 9fc-20c-12p-4n-8d 87.55 15.26M 591.65M
VGG-S-split8 Flower102 17fc-40c-24p-8n-16d 85.66 7.64M 382.51M

ResNet-18 ImageNet 18c-2p-17n 70.68 11.69M 1.82G
ResNet-18-split2 ImageNet 35c-3p-34n 69.85 6.11M 0.98G
ResNet-18-split4 ImageNet 69c-5p-68n 68.07 3.32M 0.55G
ResNet-18-split8 ImageNet 137c-9p-136n 66.76 1.93M 0.34G

† fc: fully-connected, c: convolution, p: pooling, n: normalization, and d: dropout.
* Detailed results are removed for brevity, refer to Figure 9. The results follows the same trend.

and fully connected layer in the split version create fewer
outputs; therefore, the next layer requires fewer parameters.
In the next section, we restore the accuracy of LCP models
with split-fattened models.
Split-Fattened Models Accuracy is a defining factor in sev-
eral applications. Thus, we provide a remedy to restore the
accuracy of split-only models. By adding more parameters to
each branch, we aim to create larger layers in the split-only
models. To do so, for each layer (but classification layer), in
every branch, we increase the width by a fraction. Fattening
by 20% means the output size in each layer is increased 1.2x.
We fatten every branch in 10% steps as Procedure 1 shows.
Our experiments focus on split8, which have the highest
accuracy drops. Figure 10 shows a summary of these models.
As seen, 40% split-fattened models have higher accuracy than
the original model while having fewer parameters and MAC
operations. On average (for 30% and 40% models), with
4.61x–3.81x fewer parameters and 2.95x–2.5x fewer MAC
operations, split-fattened models achieve accuracy within our
error bound of 3%, Taskerror, while they jointly optimize
memory, computation, and communication for IoT.
ImageNet Models: Table III illustrates the results of ImageNet
models. For the sake of brevity, we only show split8 and one
fattened model. As shown, f40 models restore the accuracy

-0.9

0.05

-4.02 -4.89
-1.85 -2.48

-3.9-6

-1

4

LeNet-FC
(MNIST)

LeNet
(MNIST)

CifarNet
(Cifar10)

CifarNet
(Cifar100)

VGG-S
(Cifar100)

VGG-S
(Flower102)

ResNet-18
(ImageNet)

To
p-

1 
Ac

cu
ra

cy
 

Di
ffe

re
nc

e 
Vs

. 
O

rig
in

al
 (%

)

Split2 Split4 Split8

7.89 6.99 7.63 7.63 7.98 7.96
6.06

0
2
4
6
8

10

LeNet-FC
(MNIST)

LeNet
(MNIST)

CifarNet
(Cifar10)

CifarNet
(Cifar100)

VGG-S
(Cifar100)

VGG-S
(Flower102)

ResNet-18
(ImageNet)

Re
du

ct
io

n 
in

 
#P

ar
am

et
er

s 
(T

im
es

)

7.89 6.99

2.83 2.83

7.19
4.84 5.35

0
2
4
6
8

10

LeNet-FC
(MNIST)

LeNet
(MNIST)

CifarNet
(Cifar10)

CifarNet
(Cifar100)

VGG-S
(Cifar100)

VGG-S
(Flower102)

ResNet-18
(ImageNet)Re

du
ct

io
n 

in
 

#M
AC

 O
pe

ra
tio

ns
 

(T
im

es
)

(a)

(b)

(c)

Fig. 9. Split-Only Models: (a) Accuracy, (b) reduction in the number of
parameters, and (c) reduction in the number of MAC operations in comparison
with the original model.

2.83

7.33
4.84

2.13

5.19 3.80

1.88

4.38
3.14

1.50
3.77 2.80

0
2
4
6
8

CifarNet (Cifar10) VGG-S (Cifar100) VGG-S (Flower102)Re
du

ct
io

n 
in

 
N

um
be

r o
f M

AC
 

O
pe

ra
tio

ns
 

(T
im

es
)

7.63 7.98 7.96
5.11 5.61 5.75

4.30 4.74 4.79
3.32 4.06 4.12

0
2
4
6
8

10

CifarNet (Cifar10) VGG-S (Cifar100) VGG-S (Flower102)Re
du

ct
io

n 
in

 
N

um
be

r o
f 

Pa
ra

m
et

er
s 

(T
im

es
)

(a)

(b)

(c)

-4.02
-1.85 -2.48

-1.07
-0.28

0.51

-0.55

0.27 1.10.38 0.73 1.45

-5
-3
-1
1
3

CifarNet (Cifar10) VGG-S (Cifar100) VGG-S (Flower102)

Ac
cu

ra
cy

 
Di

ffe
re

nc
e 

Vs
. 

O
rig

in
al

 (%
) Split8 Split8-f10 Split8-f20 Split8-f30 Split8-f40

Fig. 10. Split-Fattened Models – Common visual models (a) Accuracy
difference, (b) reduction in the number of parameters, and (c) reduction in the
number of MAC operations in comparison with the original one (Table II).

within 3% of the original model. The tradeoff for 3% accuracy
loss is about 4x fewer parameters, 4x fewer computations, and
8x less communication load (vs. model parallelism). Figure 11
presents a comparative analysis for the communication load
between distributed original models with model parallelism
and distributed LCP models. Since LCP models avoid com-
munication between their branches, the communication load is
reduced significantly. In short, although split models are more
complex than the original models in terms of the number of
layers and connections, they achieve more parallelism with
less communication load.

B. Exploring Performance on RPis, PYNQs, and AWS

RPi Experiments Setup: To study the benefits of LCP models
versus only model-parallelism methods, we deploy several
models on a distributed system of Raspberry Pi 3s (RPis), the
specifications in Table IV. On each RPi, with the Ubuntu 16.04
operating system, we use TensorFlow and Apache Avro, a
remote procedure call (RPC) and data serialization framework,
for communication between RPis. We measure power using
a USB digital multimeter. A local WiFi network with the
measured bandwidth of 62.24 Mbps and a measured client-to-
client latency of 8.83 ms for 64 B is used. All the real-world
experiments are full-system measurements with all overheads
included without any simulations/estimations.
RPi Performance & Energy: Figure 12 presents latency of
inference per image on RPis. On a single device, AlexNet
has 2.8 seconds latency, while VGG16 achieves 9.4 seconds
latency. By deploying model-parallelism variants of the models
on four and eight RPis, we achieve a maximum of 0.42s
latency, a 6.6x increase, for AlexNet. But, for VGG16, on
four RPis, we observe a slowdown, which is caused by high
communication latency. LCP variants of split4 and split8 can
reach up to 115 ms and 400 ms latency per image for AlexNet

0
300
600
900

1200

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

VGG16 AlexNet ResNet-50

Re
qu

ire
d 

Pa
irs

 o
f 

Co
nn

ec
te

d 
De

vi
ce

s Model Parallelism ETP

∼8x ∼8x ∼8x

VGG16 AlexNet ResNet-50

LCP

Fig. 11. Communication reduction with LCP models compared to model
parallelism (required pairs of connections).



28
01

64
0

42
0 75

0

74
5

57
9

57
8

17
0

11
5

14
6

93
81

13
30

0

27
78

88
7

39
9 75

3

24
60

14
06

10
60

11
80

99
0

13
98

10
58

0
400
800

1200
1600

One Device (1)

Model Parallelism (4)

Model Parallelism (8)

SplitNets (1-1-3)

SplitNets (1-2-5)

SplitNets (2-4-8)

SplitNets (2x5)
Split4 (4)

Split8 (8)

Split8-40f (8)

One Device (1)

Model Parallelism (4)

Model Parallelism (8)
Split4 (4)

Split8 (8)

Split8-40f (8)

One Device (1)
Split4 (4)

Split8 (8)

Split8-40f (8)

ResNet-18 (1)

MobileNets-v2 (1)

SqueezeNet (1) [35]

AlexNet VGG16 ResNet-50 ABC

La
te

nc
y 

/ 
Im

ag
e 

(m
s)

LCP
Models For 
Comparison

Most Recent Related Work -- SplitNet

[61]

Fig. 12. Latency per image: Model-parallelism, SplitNet [3], and LCP models on RPi (number in parenthesis is #devices).

TABLE III
RESULTS OF IMAGENET LCP MODELS.

Model Name Dataset Top-1 Top-5 # # MAC
Acc. Acc. Param. MAC Opr.

AlexNet ImageNet 57.02 80.32 50.3M 678.97M
AlexNet-split8 ImageNet 49.03 73.10 6.32M 145.37M

AlexNet-split8-f40 ImageNet 54.68 77.06 12.11M 244M

VGG16 ImageNet 70.48 90.02 138.36M 15.47G
VGG16-split8 ImageNet 58.67 81.54 7.64M 2.01G

VGG16-split8-f40 ImageNet 67.24 89.23 33.78M 3.87G

ResNet-50 ImageNet 75.4 93.1 22.80M 4.87G
ResNet-split8 ImageNet 61.79 81.22 5.42M 0.88G

ResNet-split8-f40 ImageNet 72.12 92.19 8.60M 1.18G

MobileNet ImageNet 71.7 90 4.24M 4.86G
MobileNet-split8 ImageNet 59.68 83.23 1.12M 0.93G

MobileNet-split8-f40 ImageNet 68.05 89.12 2.12M 1.34G

For [model_name]-f[number], number represent the percentage of fattening.

3.
16

3.
75

3.
49

0.
50

0.
33

0.
42

34
.4

6

16
8.

11

72
.8

5

11
.9

9

10
.1

7 19
.6

6

0
4
8

12
16

One Device (1)

Model Parallelism (4)

Model Parallelism (8)
Split4 (4)

Split8 (8)

Split8-40f (8)

One Device (1)

Model Parallelism (4)

Model Parallelism (8)
Split4 (4)

Split8 (8)

Split8-40f (8)

AlexNet VGG16

En
er

gy
 /

 In
fe

re
nc

e 
(J

)

Fig. 13. All devices energy per inference: Model-parallelism, and LCP on
RPi (number in parenthesis is #devices).

and VGG16, respectively. This is because LCP models are
lightweight and parallelizable and have low communication.
Figure 13 shows measured energy per inference for RPi
implementations. To compare with previous related work,
SplitNet [3], Figure 12 presents the performance of Split-
Net models for AlexNet with different configurations. As
seen, the performance is worse than LCP models. This is
because SplitNet creates more merging/synchronization points
with its tree-structured model design. The resulting model
exponentially introduces more merging/synchronization with
increased depth, which also does not equally split all the layers
(causing load balancing issues). Finally, SplitNet performs
parallelization based on dataset semantics, which means every
dataset and model needs to be manually split. §II provided
more reasons on this performance difference.

TABLE IV
SPECIFICATION OF RPI, PYNQ FPGA, AND AWS.

Raspberry Pi 3B+

CPU 1.2 GHz Quad Core ARM Cortex-A53
Memory 1 GB LPDDR2 SDRAM @ 933Mb/s/pin
Die Size ≈ 196mm2 @ 28 nm

Edge FPGA (Zynq Artix 7 XC7Z020)

Utilization
DSP48E FF LUT

#Unit 96 5427 2343
% 44 5 4

Static Power 0.121 W
Dynamic Power Signals: 0.009 W Logic: 0.003 W

AWS

AWS Instance T2.micro
Specification 1 vCPU, 1 GB Memory, 64 GB Storage

TVM Experiments on PYNQ Boards: As a real-world
example for IoT FPGA implementation, we use TVM [5]
on the PYNQ board. PYNQ is designed for embedded ap-
plications. We use the TVM VTA stack on the PYNQ as
the architecture (RISC-style instructions) and only change
the models (ResNet-18 vs. LCP ResNet-18 Split2 with <1
accuracy drop). In this way, we can measure the benefits of
LCP models without relying on any special tailored hardware.

0
2
4
6

ResNet-18 ResNet-18
Split2

4.
9

1.
8

2.7x
Latency Reduction

(1) (2)La
te

nc
y 

/ 
Im

ag
e 

(s
)

0
10
20
30
40
50

ResNet-18 ResNet-18
Split2M

em
or

y 
Fo

ot
pr

in
t

/ 
D

ev
ic

e 
(M

B)

44

11

(a)

(b)

4x Memory 
Footprint Reduction

(1) (2)

Fig. 14. TVM Experiments: (a) La-
tency per image, (b) memory foot-
print per device (number in paren-
thesis is #devices).

Our performance result shares
the entire system pipeline per-
formance, from a live camera
feed to prediction output on
two boards versus one board.
Figure 14a shows a 2.7x
speedup, including all com-
munication and system over-
heads, network latency, and
jitter because LCP models
are parallelized on two de-
vices and, in total, they have
lower computation and mem-
ory footprints. The measured
reduction in memory footprint
is shown Figure 14b.
AWS Experiments: To see the reduced communication and
distributed execution benefits of LCP models further, we
deploy AlexNet, VGG16, and ResNet-50 models on AWS
T2.micro instances with only one vCPU and 1 GB memory
per instance. Figure 15 presents the derived statistics. In all
cases, LCP models not only reduces the average latency but
also significantly reduce maximum latency. Splits four and
eight have lower speedup compared with our RPi experiments
because all the 4/8 instances are not hosted on the same
machine; thus, the communication cost is higher than the usual
IoT-specific cases that this paper targets.

C. FPGA Experiments

FPGA Experiments Setup: We implement our tailored mi-
croarchitecture on a ZYNQ XC7Z020 FPGA targeting PYNQ-
z1 boards. We use Xilinx Vivado HLS for implementation and
verify the functionality of our implementation using regression

0

200

400

600

1 2 4 8
Split

ResNet-50

0

500

1000

1500

1 2 4 8
Split

VGG16

0

200

400

600

1 2 4 8

La
te

nc
y 

(m
s)

Split

AlexNet

max

min
avg

Fig. 15. Average, minimum, and maximum latency of distributed LCP on
AWS T2.micro instances with 1 vCPU and 1 GB memory per instance.



7.
6

2.
2

0.
7

0.
2

0.
3

9.
8

3.
2

1.
2

0.
5

0.
6

9.
6

3.
6

1.
5

0.
7 0.
7

57
.8

14
.8

3.
8

1.
0 1.
4

14
.8

3.
6

1.
2

0.
4

0.
7

0%
20%
40%
60%
80%
100%

0
2
4
6
8

10
12

O
ne

 D
ev

ic
e 

(1
)

Sp
lit

2 
(2

)
Sp

lit
4 

(4
)

Sp
lit

8 
(8

)
Sp

lit
8-

f4
0 

(8
)

O
ne

 D
ev

ic
e 

(1
)

Sp
lit

2 
(2

)
Sp

lit
4 

(4
)

Sp
lit

8 
(8

)
Sp

lit
8-

f4
0 

(8
)

O
ne

 D
ev

ic
e 

(1
)

Sp
lit

2 
(2

)
Sp

lit
4 

(4
)

Sp
lit

8 
(8

)
Sp

lit
8-

f4
0 

(8
)

O
ne

 D
ev

ic
e 

(1
)

Sp
lit

2 
(2

)
Sp

lit
4 

(4
)

Sp
lit

8 
(8

)
Sp

lit
8-

f4
0 

(8
)

O
ne

 D
ev

ic
e 

(1
)

Sp
lit

2 
(2

)
Sp

lit
4 

(4
)

Sp
lit

8 
(8

)
Sp

lit
8-

f4
0 

(8
)

CifarNet VGG-S AlexNet VGG16 ResNet-50

La
te

nc
y 

/ 
Im

ag
e 

(m
s)

Latency Improvement in Communication

1.
0 3.
5 11
.2

32
.1

27
.4

1.
0 3.
1 8.
1 19

.6

17
.9

1.
0 2.
6 6.
3

13
.9 13
.2

1.
0

3.
9

15
.0

56
.4

41
.5

1.
0

4.
1 12

.5

33
.1

21
.5

0
10
20
30
40
50
60

O
ne

 D
ev

ic
e 

(1
)

Sp
lit

2 
(2

)
Sp

lit
4 

(4
)

Sp
lit

8 
(8

)
Sp

lit
8-

f4
0 

(8
)

O
ne

 D
ev

ic
e 

(1
)

Sp
lit

2 
(2

)
Sp

lit
4 

(4
)

Sp
lit

8 
(8

)
Sp

lit
8-

f4
0 

(8
)

O
ne

 D
ev

ic
e 

(1
)

Sp
lit

2 
(2

)
Sp

lit
4 

(4
)

Sp
lit

8 
(8

)
Sp

lit
8-

f4
0 

(8
)

O
ne

 D
ev

ic
e 

(1
)

Sp
lit

2 
(2

)
Sp

lit
4 

(4
)

Sp
lit

8 
(8

)
Sp

lit
8-

f4
0 

(8
)

O
ne

 D
ev

ic
e 

(1
)

Sp
lit

2 
(2

)
Sp

lit
4 

(4
)

Sp
lit

8 
(8

)
Sp

lit
8-

f4
0 

(8
)

CifarNet VGG-S AlexNet VGG16 ResNet-50

Speedup Ideal Linear Speedup due to More Devices 

Sp
ee

du
p 

ov
er

 O
ne

 D
ev

ic
e

Im
pr

ov
em

en
t I

n 
 C

om
m

un
ic

at
io

n

(a)
CifarNet VGG-S AlexNet VGG16 ResNet-50

CifarNet VGG-S AlexNet VGG16 ResNet-50

(b)

Fig. 16. FPGA with tailored hardware latency and speedup: (a) Latency per
image, (b) speedup over one device (number in parenthesis is #devices).

tests. We use relevant #pragrma as hints to describe our de-
sired microarchitectures in C++. We synthesize and implement
our design using Vivado and report post-implementation (i.e.,
place & route) performance numbers and resource utilizations.
Inputs and output of our design are transferred through the
AXI stream interface. The clock frequency is set to 100 MHz.
Communication for multiple devices is estimated with the
network provided in §IV-B.
FPGA Performance: Figure 16 shows the experiment results
for our IoT-tailored hardware. The latency per image is shown
in Figure 16a, with improvement in communication overhead
versus model-parallelism methods (86% and 60% for 8split
and 4split). Depending on the model, the inference per latency
on a single device is between 4–29ms; a 221–325x speedup
compared to RPi results for AlexNet and VGG16. Our de-
signed LCP models achieve acceptable performance for IoT
computing, which is 10s of inferences per second, around
1–10ms. As observed, the accuracy loss of our split-only
models can be easily restored by fast split-fattened models
of f40 with a negligible performance overhead (maximum
of 20 ms). Figure 16b illustrates the speedup over one device.
The ideal linear speedup shows the ideal scaling speedup with
more available devices. As shown, we achieve superlinear
speedups. An important parameter in scaling concerns how
the overheads scale. The superlinear speedup stems from
the dramatic reduction of communication overhead as par-
allelism increases. In traditional data and model parallelism,
such overhead increases, which causes sublinear speedup.
Figure 17 compares latency per image for LCP and model par-
allelism. On average, LCP models are 3.76x, 8.89x, and 7.17x
faster than their model-parallelism counterparts for AlexNet,
VGG16, and ResNet-50 (4 and 8 devices), respectively. LCP
achieves a maximum and average speedups of 56x and 7x,
compared to the originals (Figure 18, base bars).
Quantization & Pruning: Techniques that reduce the foot-
print of DNNs can be applied to each individual LCP branch.
Basically, the target output for each LCP branch is now

0
4
8

12
16

4 Devices 8 Devices

VGG16

Original Model with Model Parallelism ETP Model

0
0.5

1
1.5

2
2.5

4 Devices 8 Devices

AlexNet

La
te

nc
y 

/ 
Im

ag
e 

(m
s)

Avg Speedup: 3.76x Avg Speedup: 8.89x

0
1
2
3
4

4 Devices 8 Devices

ResNet-50

Avg Speedup: 7.17x

AlexNet VGG16 ResNet-50

LCP Model

Fig. 17. Latency per image for IoT FPGA with tailored hardware comparing
LCP vs. model parallelism.

its pre-final activations during optimizations. We study the
benefits of lossless quantization and structured pruning on
top of our LCP models. Based on our experiment, with 3.13
(<integer.fraction>) quantization, our models do not lose
accuracy. Similarly, applying structured pruning [6], for which
systolic arrays gain benefits, reduces the size of parameters
between 40%–50% per convolution layer without an accuracy
drop. Other pruning algorithms increase the sparsity of the
data, which is not necessarily beneficial for systolic arrays.
Figure 18 presents the speedup gained from these techniques
normalized to the baseline implementation for each model, the
execution performance of which shown in Figure 16a. Quan-
tization and pruning themselves, improve the performance of
the original models by 1.96x and 2.2x, respectively, and 4.31x
when applied together. When quantization and pruning are
combined with LCP, the overall performance speedup becomes
14.41x and 16.31x, respectively. Compared to the original
models, LCP + quantization and pruning achieves up to 244x
speedup (VGG16-split8), and an average of 33x.

D. ASIC Implementation

We implement the ASIC design of LCP using an Arizona
State Predictive PDK (ASAP) 7nm technology node. Our
tool chain includes the Synopsys design compiler (DC) for
synthesis, Cadence Innovus for place and route, and Cadence
Tempus for timing and power analysis. As an input to our
ASIC design, we use our same Verilog code generated by
Vivado HLS. Figure 8b show the layout of our chip of size
0.107 mm2 (i.e., 295µm× 365µm). The memory cells shown
in the figure represent the FIFO buffers, used for pipelining.
Figure 19 shows the power consumption of our ASIC design.
The breakdown of power consummation leading to a total
16.1 mW is listed in Figure 19a. As a comparison point,
Eyeriss [7] and EIE [8] consume ≈250 mW and ≈590 mW,
respectively. Besides, as Figure 19b shows, power distributes
uniformly, which prevents hot spot creation.

V. RELATED WORK

We overview DNN computation reduction methods, distri-
bution techniques, and DNN hardware accelerators. Model-
independent techniques reduce DNN computational and mem-
ory requirements without changing the architecture. Prun-
ing [9], [10] removes nearly-zero weights while quantization
or low-precision inference [11], [12] simplifies calculations.
Other methods involve resource partitioning [13], weight bi-
narization [14], [15], and hardware-aware optimizations [16].
However, some techniques reduce accuracy. With increasing
IoT use, industry has created optimized frameworks such as
ELL library and Tensorflow Lite. Others developed mobile-
specific models [17] with efficient operations or models to



7.
35

x
14

.4
1x 16

.3
1x

32
.6

2x

1

10

100

1000

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

Sp
lit

8-
f4

0

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

Sp
lit

8-
f4

0

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

Sp
lit

8-
f4

0

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

Sp
lit

8-
f4

0

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

Sp
lit

8-
f4

0

O
rig

in
al

Sp
lit

2

Sp
lit

4

Sp
lit

8

Sp
lit

8-
f4

0

CifarNet VGGS AlexNet VGG16 ResNet-50 GMEAN GMEAN

Base Quantization Pruning Quantization & Pruning
Sp

ee
du

p 
O

ve
r

O
ne

 D
ev

ic
e 

fo
r 

Ea
ch

 D
N

N
 (l

og
. S

ca
le

)

CifarNet VGG-S AlexNet VGG16 ResNet-50

O
ve

ra
ll

G
M

EA
N

GMEAN

Fig. 18. FPGA with tailored hardware with lossless (≤0.1%) quantization & structured pruning to achieve additional speedup.

2.7

13.4

0.02

16.1

0
2
4
6
8

10
12
14
16
18

Sw
itc
hin
g

Int
erc
on
ne
cti
on
s

Le
ak
ag
e
To
talPo

w
er

 C
on

su
m

pt
io

n 
(m

W
)

1.0e+02
mW(log)

5.6e+00
3.2e-01
1.8e-02
1.0e-03
5.6e-06
3.2e-06

1.8e-07
1.0e-08

(a) (b)
Fig. 19. Power Consumption for 7-nm ASIC Design @800MHz: (a) break-
down (b) distribution.

reduce parameters. However, they often sacrifice accuracy
for efficiency [18], or lack efficient parallelism. Few papers,
like SplitNet [3], focus on model parallelizability but face
issues with branch imbalances and device invariance. Recently,
automated design process has seen increased interest [4], [19],
[20]. In [21], in follow up to LCP, we propose the relaxation of
the single-chain dependency constraint in neural architecture
search (NAS), facilitating higher concurrency and distribution
opportunities in deep learning architectures. This approach,
complemented with a new generator and transformation block,
points towards a promising direction for reducing inference
latency and improving computational efficiency in modern
deep learning models. Distributing large DNN models has
been also explored [22]–[24].

VI. CONCLUSIONS

This paper proposed LCP models, designed for efficient DNN
inference in IoT systems. LCP models optimize communi-
cation while reducing memory and computation by utilizing
several narrow independent branches. We presented our results
on RPis, FPGAs for IoT, AWS instances, and a tailored
systolic-based hardware.

REFERENCES

[1] R. Hadidi, B. Asgari, S. Jijina, A. Amyette, N. Shoghi, and H. Kim,
“Quantifying the design-space tradeoffs in autonomous drones,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
661–673.

[2] R. Hadidi, J. Cao, Y. Xie, B. Asgari, T. Krishna, and H. Kim,
“Characterizing the deployment of deep neural networks on commercial
edge devices,” in 2019 IEEE International Symposium on Workload
Characterization (IISWC), 2019.

[3] J. Kim, Y. Park, G. Kim, and S. J. Hwang, “Splitnet: Learning to
semantically split deep networks for parameter reduction and model
parallelization,” in ICML. JMLR. org, 2017, pp. 1866–1874.

[4] S. Xie, A. Kirillov, R. Girshick, and K. He, “Exploring randomly wired
neural networks for image recognition,” in IEEE ICML, 2019, pp. 1284–
1293.

[5] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu,
L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm: end-to-end opti-
mization stack for deep learning,” arXiv preprint arXiv:1802.04799, pp.
1–15, 2018.

[6] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep
convolutional neural networks,” ACM Journal on Emerging Technologies
in Computing Systems (JETC), vol. 13, no. 3, p. 32, 2017.

[7] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–
138, 2017.

[8] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2016, pp. 243–254.

[9] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware par-
allelism,” in 44th International Symposium on Computer Architecture
(ISCA). IEEE, 2017, pp. 548–560.

[10] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” in Advances
in Neural Information Processing Systems (NIPS), 2017, pp. 2181–2191.

[11] U. Köster, T. Webb, X. Wang, M. Nassar, A. K. Bansal, W. Constable,
O. Elibol, S. Gray, S. Hall, L. Hornof et al., “Flexpoint: An adaptive
numerical format for efficient training of deep neural networks,” in NIPS,
2017, pp. 1742–1752.

[12] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of
deep convolutional networks,” in ICML, 2016, pp. 2849–2858.

[13] J. Guo, S. Yin, P. Ouyang, L. Liu, and S. Wei, “Bit-width based resource
partitioning for cnn acceleration on fpga,” in 25th Annual IEEE FCCM,
2017.

[14] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiv:1605.04711, 2016.

[15] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or- 1,” arXiv preprint
arXiv:1602.02830, 2016.

[16] B. Asgari, R. Hadidi, and H. Kim, “Ascella: Accelerating sparse com-
putation by enabling stream accesses to memory,” 2020.

[17] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[18] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520.

[19] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in CVPR, 2018, pp. 8697–
8710.

[20] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 2016.

[21] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Reducing inference latency
with concurrent architectures for image recognition at edge,” in 2023
IEEE International Conference on Edge Computing and Communica-
tions (EDGE), 2023.

[22] R. Hadidi, J. Cao, M. Woodward, M. S. Ryoo, and H. Kim, “Distributed
perception by collaborative robots,” IEEE Robotics and Automation
Letters, vol. 3, no. 4, pp. 3709–3716, 2018.

[23] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Towards collaborative
inferencing of deep neural networks on internet of things devices,” IEEE
Internet of Things Journal, 2020.

[24] R. Hadidi, J. Cao, B. Asgari, and H. Kim, “Creating robust deep neural
networks with coded distributed computing for iot,” in 2023 IEEE
International Conference on Edge Computing and Communications
(EDGE), 2023.


