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1. Motivation

Over the last decade, significant progress has been made in
developing autonomous drones, with countless applications
such as aerial mapping, natural disaster recovery, search and
rescue, ecology, and entertainment. Thus, many control, plan-
ning, and perception methods have been assimilated for drones.
Nevertheless, drones must operate under quite different condi-
tions than any other compute-based agent. First, weight and
power are restrictive parameters in drones. Second, drones
must arbitrate between their limited compute, energy, and elec-
tromechanical resources not only based on the current tasks
and local conditions (e.g., wind), but also according to the
flight plan. Despite huge technological advances, these prob-
lems have been approached in isolation, and the end-to-end
system design-space tradeoffs are largely unknown.

As a result of such isolated problem solving, architecting
end-to-end drone systems and their computation landscape
still remains an open question. For example (Figure 1), if we
are making a special chip for drones, is improving processor
performance useful and, if yes, is it because of energy savings
or better control? How useful is improving processor power
efficiency given that the majority of power consumption is
coming from resources other than computing power? Should
we focus on optimizing the flight-related tasks, or should we
focus on autonomy tasks? These questions relate to creating
cost-effective solutions with low integration cost, reasonable
development time, and effectiveness on drone metrics.

To answer such questions and solve worthy research prob-
lems, we need to understand fundamental drone subsystems,
classify drone computations and their requirements, extract
design-space tradeoffs, and have access to a reproducible
experimental platform.

2. Limitations of Prior Work

Prior studies [3, 8] have proposed a closed-loop simulator
and benchmark suite for autonomous tasks in drones. The
discussions only pertain to high-speed drones, which does not
completely answer the previous questions for the following
reasons. In contrast to the assumptions made in these studies,
we argue that, first, mission planning computation does not
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Figure 1: Impactful contributions in drones are only realized
by quantifying the design-space tradeoffs.

increase hovering time since they have a relaxed deadline [14].
Even in high-speed, indoor, and cluttered environments, new
algorithms have been proposed to enable fast planning [9, 10].
Second, collision detection does not necessarily require heavy
computations (e.g., using laser-range, infrared, or RGBD sen-
sors, or even microcontrollers) [4, 6, 11, 5]. Third, localization
is a highly active research area and does not necessarily limit
current drone speeds (e.g., real-time odometry and NASA
JPL’s autonomous racing) [13, 12, 7]. Finally, described con-
clusions in [3, 8] is based on maximum drone acceleration, the
value of which is not readily known from the specifications of
a drone. In summary, current studies have the following miss-
ing components: (i) The design-space tradeoff for the drone’s
computational profile and the effect of computation power on
the flight time; (ii) Required computing for real-time control
(inner-loop) and autonomous features (outer-loop) that is not
biased toward high-speed drones, but covers the full picture
and technologies; (iii) An open-source, reasonably-priced,
and reproducible experimental platform with a customizable
hardware-software stack is not yet available.

3. Key Insights and Results
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Figure 2: The total power consumption (a) and the computa-
tion footprint (b) for drones with a 450mm wheelbase.

The key insight of this paper is to carry out a systematic 
formulization to quantify the design-space tradeoffs of au- 
tonomous drone systems by using the empirical measurements 
and physics to (i) explore major trade-offs across the entire 
hardware-software stack, (ii) study the computational profile 
and landscape of such systems, and (iii) connect three essential 
drone metrics including flight time, control response time, and 
autonomous features, as well as several other design-space 
metrics. Two examples of the metrics studied are shown in 
Figure 2. Figure 2a exhibits the total power consumption of 
450mm drones formulized by our study and verified using 
data from commercial drones shown as additional data points. 
Figure 2b illustrates the computation footprint for 3 W and 20 
W chips, which for instance, is utilized to translate compute 
power efficiency to flight time by untangling the multifaceted 
relationships in drones. For instance, Figure 3 shows heavy 
computation power contribution and flight time for commer-
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Figure 3: Heavy computation power contribution and flight
time of commercial small-size drones.

cial small-sized drones.
Our studies present a few important findings. For instance,

we discover that the update frequency of the inner-loop control
is 50–500 Hz, which is not limited by the high-end computa-
tion power, but by the physical response time and inertia of
the electromechanical components in drones.

Our findings also quantify the percentage of computation
power from total power; it widely ranges from 2–30%, which
potentially enables gaining +5 minutes of flight time in small
drones. Finally, an example evaluation that optimizes SLAM
implementation on various hardware platforms (detailed re-
sults in Table 1) shows that moving from GPU/CPU to FPGA
provides 20x power savings hence extending flight time by
15–20% (+2–3 minutes) in small drones.

4. Contributions
This is the first paper to contribute the following:
• Formalizes the fundamental drone subsystems and quanti-

fies the design-space tradeoffs for the computational profile
of drones to discover how computation power consumption
affects drone flight time, accomplished by incorporating
physics and empirical measurements from 300 commercial
components and 150 manufacturers.

• Clearly separates the required computing for inner-loop
controls (real-time requirements) vs. outer-loop controls
(autonomous features) in drones and outlines the required
computation amount and benefits gained.

• Showcases the optimization landscape for a widely used
SLAM algorithm and the effects on flight time.

• Develops an open-source and reproducible platform with a
customizable hardware-software stack to address the lack
of publicly available drone platforms.

5. Main Artifacts
The main artifacts of our paper are as following:
(I) We quantify design-space tradeoffs that pertain to com-
putation power and efficiency in drones by extracting crucial
metrics from over 300 commercial components and 150 man-
ufacturers, by performing the procedure shown in Figure 5.
As this procedure shows, based on the data and relationships
extracted in the paper, one can accurately quantify the bene-
fits of architecture and system optimizations to obtain gained
flight time for a wide range of drones.
(II) We developed and fly tested a fully open-source experi-
mental drone that is fully customizable across its hardware-
software stack to address the lack of publicly available end-to-
end experimental and reproducible drone frameworks, shown
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Figure 5: Quantifying compute power consumption in drones.

in Figure 4. Unlike popular platforms such as the CrazyFlie [2]
or the PlutoX [1], which limit access to flight code and
cannot carry additional payloads; our drone can be con-
figured for a variety of research purposes, can carry addi-
tional 200g for additional embedding platforms such as FPGA
boards, and grants complete access to all control systems.

Figure 4: Our Drone.

(III) We showcase the presented
tradeoffs by evaluating design op-
timizations on performance and
power consumption on flight time.
We explore offloading SLAM,
a widely-used algorithm in au-
tonomous drones, into various hard-
ware platforms. Table 1 lists the results of this showcase study.
Validation: We verify our findings by studying released flight
times and battery configurations of commercial drones, shown
as additional data points in graphs (similar to Figure 2). More-
over, no data skewing or pre-selection is used for extracting
tradeoffs. All data points are from actual commercial compo-
nents available in market (all listed in our repository). For the
SLAM study, we include all benchmarks in EuRoC dataset.

6. Why ASPLOS

Our multidisciplinary paper emphasizes the synergy of archi-
tecture and system areas by the quantifying the system-level
tradeoffs in autonomous drones and integrating them in archi-
tecting efficient computation platforms. Therefore, our paper
will be best utilized by the broad ASPLOS community with
both architecture and system backgrounds.

Table 1: Comparing costs of various platforms for SLAM.
Platform RPi TX2 FPGA ASIC

SLAM Speedup 1x 2.16x 30.70x 23.53x

Power Overhead (W) 2 10 0.417 0.024

Weight Overhead (g) ≈50 ≈85 ≈75 ≈20

Integration Cost Low Low Medium High

Fabrication Cost Low Low Medium High

Gained Flight
Time (min)

Small Drones 0 ≈-4 ≈2–3 ≈2.2–3.2

Large Drones 0 ≈-1.5 ≈1 ≈1
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