





# Internet of Things & Edge Devices

- Have access to an abundance of raw data
- In home, work, or vehicle













































































































# IoT & Edge: Raw Data & Processing

- ▶ Are gaining ground with the widespread of
  - ▶ Embedded processors
  - Ubiquitous wireless networks
- Access to raw data
  - Need to understand it
  - Have real-time constraints
  - Have limited resources
    - Power
    - Computation











# IoT & Edge: DNN-based Processing

- ▶ With deep neural networks (DNNs):
  - ▶ IoT & Edge devices can
    - Process several new data types and
    - Understand behaviors
  - Examples: Speech, vision, video, and text
- ▶ But, DNNs are resource hungry
  - Cannot meet real-time constraints on IoT devices
  - Several DNNs cannot be executed on IoTs









# Approach 1: Offloading to Cloud

### Why Cloud is Not Always a Good Solution?

- Connections to cloud are unreliable
- ▶ Bandwidth is low and latency is high
- Devices are not always connected
- ▶ Privacy
  - User's data leaves the local network
  - Insecure connections and protocols threaten data
  - User loses ownership of data









# Approach 2: In-The-Edge Collaboration

- Distributing computations with collaboration
  - ▶ To meet demands of DNNs
  - On top of common DNN techniques for constrained devices (e.g., pruning)















### In-The-Edge Collaboration Pros & Cons

#### Pros

Does not Depend on Cloud

**Preserves Privacy** 

Enables Personalized Insight

#### Cons

Unreliable Latencies

High Communication
Overhead due to Model
Interconnectivity

Accuracy Drop due to Data Loss & Device Failures



## Unreliable Latency & Interconnected Models

▶ The histogram of arrival times in a 4-node system of RPis performing AlexNet (model parallelism).



▶ Long Tail and Max Latency -> Straggler Problem









# Reason: Highly Interconnected Models

▶ Highly interconnected DNN models are not easy to distribute with common distribution methods:



#### Model Parallelism: Needs several inputs

#### Data Parallelism:

Creates several connections to aggregate/collect results









## Reason: Highly Interconnected Models

 Highly interconnected DNN models are not designed for efficient distribution and low communication











# Solution: Design New DNN Models

Design new DNN models that are efficient with distribution and has low communication











### Our FPGA Implementation

- Using PYNQ boards
- ResNet18 model: Divided in two branches with less than 5% accuracy loss
  - 2.4x higher throughput
- Using TVM/VTA\* stack for FPGA implementation
- Models build with MXNet Gluon
- ▶ RPC server-client model for communication
- Code available on GitHub

**FPL Demo Website:** 

http://comparch.gatech.edu/hparch/fpl19



\*Chen, Tianqi, et al. "TVM: end-to-end optimization stack for deep learning." arXiv preprint arXiv:1802.04799 (2018): 1-15.









# TVM/VTA Stack

- ▶ Vanilla Tensor Accelerator (VTA) is a generic deep learning accelerator built around a GEMM core
- ▶ VTA provides design and JIT runtime compatible with TVM stack
- VTA integrates a RISC-like processor for dense algebra that works on tensor registers

design adopts decoupled access-execute to hide memory access

latency.

 design adopts decoupled access-execute to hide memory access latency.

More at: docs.tvm.ai/vta











#### Source Code Available on Github

- We released documented source code on Github
- We include our new DNN model description, training procedure, importing to VTA, and live camera demo files



 Accessible through demo website











#### Our Experience

- PYNQ boards are unique in bridging between regular ARM cores with Linux tools & FPGAs
- ► TVM/VTA Stack:
  - Not every model currently complies to VTA compatible code. We had to change our new model parameters to match the hardware specification (MXNet Gloun)
  - VTA profiles lots of hardware parameters to tune. However, we were not able to use automated profiling tools
    - ▶ Example: A non-optimized hardware implementation is even slower than CPU-based implementations
  - Finding a suitable model and frontend that actually can run on the TVM VTA due to the shape constraints
  - Tight coupling of RPC server and compilation machine









# \*Increasing Reliability in Edge Systems

▶ DAC'19

Robustly Executing DNNs in IoT Systems Using Coded Distributed Computing

Using Coded Distributed Computing (CDC) to increase reliability

$$\begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{11} + w_{21} & w_{12} + w_{22} \end{bmatrix} \times \begin{bmatrix} a'_1 \\ a'_2 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_1 + a_2 \end{bmatrix}$$

$$\begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{:1}^{cdc} & w_{:2}^{cdc} \end{bmatrix} \times \begin{bmatrix} a_1' \\ a_2' \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a^{cdc} \end{bmatrix}$$







Output Splitting for 5 nodes Two Failures Tolerance

DAC'19 Paper:

https://dl.acm.org/citation.cfm?id=3322474



