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Abstract—The increasing interest in serverless computation
and ubiquitous wireless networks has led to numerous connected
devices in our surroundings. Such IoT devices have access to
an abundance of raw data, but their inadequate resources in
computing limit their capabilities. With the emergence of deep
neural networks (DNNs), the demand for the computing power
of IoT devices is increasing. To overcome inadequate resources,
several studies have proposed distribution methods for IoT
devices that harvest the aggregated computing power of idle IoT
devices in an environment. However, since such a distributed
system strongly relies on each device, unstable latency, and
intermittent failures, the common characteristics of IoT devices
and wireless networks, cause high recovery overheads. To reduce
this overhead, we propose a novel robustness method with a close-
to-zero recovery latency for DNN computations. Our solution
never loses a request or spends time recovering from a failure.
To do so, first, we analyze how matrix computations in DNNs
are affected by distribution. Then, we introduce a novel coded
distributed computing (CDC) method, the cost of which, unlike
that of modular redundancies, is constant when the number of
devices increases. Our method is applied at the library level,
without requiring extensive changes to the program, while still
ensuring a balanced work assignment during distribution.

Index Terms—Edge AI, Reliability, IoT, Edge, Distributed
Computing, Collaborative Edge & Robotics

I. INTRODUCTION

Recent years have witnessed the emergence of deep neural

network (DNN) applications. Additionally, with the prolifera-

tion of Internet-of-Things (IoT) devices, they became insepara-

ble from our daily lives. The conventional methods to process

raw IoT data are to offload them to cloud services. However,

moving such a tremendous amount of data incurs a high

amount of monetary cost and delay, besides creating a major

concern of privacy leakages. Therefore, serverless and edge

computation paradigms are recognized as promising solutions.

As a result, pushing the frontier of DNNs computations to

the edge is receiving a tremendous amount of interest both

from academia [1]–[9] and from the industry with commercial

edge-tailored hardware accelerators such as NVIDIA Jetson

Nano, edge TPU, and Intel Movidius.
Processing IoT data locally in the edge may suffer from poor

performance and energy efficiency because the computational

demand from DNNs outweighs the computation capacity

and energy constraints of IoT devices. Furthermore, the

computational demands are escalated because these devices

have to meet real-time constraints. Even for edge-tailored
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hardware accelerators, the real timeliness of applications is

not guaranteed [10], [11]. Nevertheless, privacy concerns,

unreliable connection to the cloud, tight real-time requirements,

and personalization are still pushing inferencing to the edge.

To address the resource constraint challenges, a solution is

to distribute heavy computations among idle devices [1], [2],

[4], [12] because the state-of-the-art IoT networks are formed

with various IoT sensors and recording agents, such as HD

cameras and temperature sensors, many of which are capable

of performing computations. However, such a distribution is

susceptible to failures, from short disconnectivity and user

interaction to losing a device. This fact necessitates developing

a robust method for tolerating these failures. Additionally,

since IoT networks use wireless technology, unreliability and

variability in their networks are much higher than acceptable

limits to ensure a robust system.
We extend studies that enable distributed single-batch

inference of DNNs in the edge [1], [2], [4], [12] to tolerate

failures with close-to-zero recovery latency. We first analyze

general methods of distributing the computations of DNNs

and how their underlying general matrix-matrix multiplication

(GEMM) is affected by distribution. Such a detailed study is

necessary to introduce a general seamless method within the

underlying library or machine learning framework. Then, we

propose a new recovery method based on coded distributed

computing (CDC) that enables distributed DNN models on

IoT devices to tolerate failures. Our method is inspired by

CDC applications in big data analytics [13], and speeding up

distributed learning using codes [14].
To enable robustness in distributed IoT, we introduce an

extra coded computation per device. We propose a novel fault

recovery method based on CDC that has close-to-zero recovery

latency, does not disturb the balanced work assignment in

distribution, requires minimal changes to the program, and

has a constant cost with the increasing number of devices.

Our introduced extra computations are derived by thoroughly

analyzing how general methods of distributing the compu-

tation of DNNs affect their underlying GEMM. The added

computations are similar in nature to those of DNNs, which

eases balancing the work among IoT devices and reduces the

deployment cost. Balanced distribution is essential in attaining

the expected performance. Additionally, since our method is

implemented at the library level, it does not require changes to

the program. Moreover, unlike approaches that sacrifice latency

for robustness to recompute the missing part of the data, our
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Fig. 1: Arrival time histogram of data packets in a WiFi network for
a four-device IoT system with RPis.

method, even at the time of failures, provides close-to-zero

recovery time, which is necessary for critical time-sensitive

tasks. Finally, compared with conventional modular redundancy

methods with redundant computation by introducing a linear

number of additional devices, our method has a constant cost as

the number of devices increases. We demonstrate our method

on Raspberry Pis (RPis), which represents the de facto choice

for several small and edge use cases.

II. MOTIVATION

To illustrate unreliability in the communication latency of

IoT systems, Figure 1 shows a histogram of the arrival times

for data packets in an IoT system of four RPis (system setup

in Section IV). This system performs the computation for

a fully-connected (FC) layer of size 2048 in a distributed

fashion and waits for the response, the measured time for

the computation on a single device is 50 ms. This is why, in

Figure 1, no packet arrives earlier than 50 ms. As seen, around

34% of the arrival times is within 100 ms, and 42% is within

150 ms. Even after 2x the computation time, around 34% of

the packets have not arrived yet. Such behavior in distributed

systems causes straggler problem, in which the slowest node

in the distributed system defines the total latency. Our method,

by introducing robustness in such systems, can additionally

alleviate the straggler problem while also guaranteeing close-

to-zero recovery latency.

To understand how failures are destructive in DNN applica-

tions, we perform another set of experiments, in which some

part of data within a layer is lost. We choose two models:

LeNet-5 [15] and Inception v3 [16]. LeNet-5 is a simple model

that detects handwritten digits from 10 classes and consists of

only five layers. On the other hand, Inception v3 is a DNN

model for image recognition for 1k classes with 159 layers.

Figure 2 illustrates the accuracy drop in these models when

some part of the data in a layer is lost. As seen, for large
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Fig. 2: High percentage data loss, common in distributed IoT systems,
causes destructive accuracy drops.
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Fig. 3: Distribution of output splitting for FC layers.

Inputs
(divided among nodes)

Weights
(divided among nodes)

Outputs
(each node calculates partial sums)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣

δa1

...
δam

⎤
⎥⎦

m×1

...⎡
⎢⎣

δa1

...
δam

⎤
⎥⎦

m×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

w11 w12 ... w1k
w21 w22 ... w2k
w31 w32 ... w3k

...
...

. . .
...

wm1 wm2 ... wmk

⎤
⎥⎦

m×k

×

⎡
⎢⎢⎣

a′
1

a′
2

a′
3

...
a′
k

⎤
⎥⎥⎦

k×1

= =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1
a2
a3

...
am

⎤
⎥⎥⎥⎥⎥⎥⎦
m×1

Fig. 4: Distribution of input splitting for FC layers.

percentages of data loss (> 70%) per layer that are common

in distributed IoT systems, the accuracy drop is destructive.

Additionally, by comparing Figures 2a and b, we see that the

sensitivity to data loss in more generalized models will only

become worse. Since the amount of data loss happens in larger

granularities, the current robustness methods in DNNs (e.g., bit-

level tolerance) are insufficient to recover the loss. In contrast,

our proposed robustness method is designed specifically for

such a high amount of data loss and can recover from it with

close-to-zero latency.

III. ROBUSTNESS WITH CDC

This section first describes how distribution methods change

computation, which helps us apply our robustness method at

the library level. Next, we provide a simple example of our

method and then we generalize it.

A. Distribution and Matrix Operations

Fully-Connected Layer: An FC layer lth performs al =
σ
(
Wlal−1 + bl

)
, in which W , a, and b are weight, activation,

and bias. First, we consider the GEMM: Wlal−1. Figure 3

illustrates how output splitting affects weight and output

matrices for an example with four devices. Since each device

calculates a set of separate outputs, the output matrix is

created separately by each device (and concatenated later).

Such separation in output generation also divides the weight

matrix along the y-axis, which has a one-by-one relationship

with the output matrix division. Each device needs a copy

of the input matrix, and the input matrix is not divided. In

the input-splitting method, as Figure 4 depicts for the same

four-devices example, the input matrix is divided between the

devices. Similarly, the weights corresponding to those inputs are

divided along the x-axis among devices. Each device calculates

partial sums for all output elements. Finally, all partial sums

are aggregated to create the final output. We can extend the

above reasoning to bias and activation. For output splitting,

biases, and the activation function can also be divided among

the devices. But, for input splitting, both need to be applied

after the aggregation. Since the majority of the computation

time of DNNs is spent on GEMMs, such a difference does not

have a big impact on computation time.
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Convolution Layer: The channel-splitting method divides the

filter weight matrix along the y-axis, as Figure 5 shows for two

devices. Likewise, since the output is unrolled, such division

translates to a similar along-the-y-axis division of the output

matrix. Hence, channel splitting in convolution layers is the

same as output splitting into FC layers and any robustness

analysis is applicable on both, but with a different set of

weights and inputs (i.e., unrolled version of filters and patches

in convolution layers). In the spatial-splitting method, since

each input patch is unrolled column-wise in the input matrix

when we spatially divide the input, this division translates to an

along-the-x-axis division of the input matrix. However, unlike

input splitting in FC layers, filter weights cannot be divided.

Therefore, spatial splitting, as conceptually shown in Figure 6

for two devices, divides the input matrix I with size HxW xC
in OKxWH = WKxF 2C × IF 2CxWH , in which C and K are

the number of channels and filters, and filter size is F xF xC.

In the filter-splitting method, a close representation of input

splitting for FC layers, both filter weights and input are divided

depth-wise. Since both filter weights and input are unrolled, we

need to divide the weight and input matrices along the x- and

y-axes, respectively. This distribution is similar to the outer

product approach in matrix multiplication, versus the most

commonly known algorithm of the inner product approach.

Figure 7 shows this approach with two devices. Each device

produces a partial sum for all elements. To create the final

output, the final device aggregates all the elements and applies

the activation function.

B. Robustness: A Simple Example
We propose a simple example of our CDC-based robustness

to facilitate understanding. Consider an FC layer with two

input and output elements, written as:[
w11 w12

w21 w22

]
×

[
a′
1

a′
2

]
=

[
a1

a2

]
. (1)

Assume that we perform output splitting. We add a row to the

weight matrix with the value of [w11 + w21 w12 + w22] to

create the summation of two outputs, or a1 + a2. With such

an addition, the above equation becomes:[
w11 w12

w21 w22

w11 + w21 w12 + w22

]
×

[
a′
1

a′
2

]
=

[
a1

a2

a1 + a2

]
. (2)

As the summation of the weights can be done offline and is

not dependent on inputs, we can rewrite the above equation as:⎡
⎣w11 w12

w21 w22

wcdc
:1 wcdc

:2

⎤
⎦×

[
a′
1

a′
2

]
=

⎡
⎣ a1

a2

acdc

⎤
⎦. (3)
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Fig. 5: Distribution of channel splitting for convolution layers.
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Fig. 7: Distribution of filter splitting for convolution layers.

The newly added weights to the weight matrix are the column

sums of the weight matrix that is done offline before loading

the weights. Therefore, with the addition of another device,

we can guarantee to recover from one missing output with

only a local subtraction in the final device. This method has

three main benefits: (i) First, this level of guarantee on all

devices is just with the addition of one device, compared to a

double modular redundancy method that duplicates all devices.

(ii) Second, this method is faster than redoing all operations

since the subtraction of two local values that we already have

received is almost more immediate than restarting all operations.

This is because, the vanilla recovery method consists of loading

a set of new weights (corresponding to the missing values) in

the final device, asking for input from previous devices, and

performing multiplications with all of its associated overhead

of communication. (iii) Third, although we introduced the

computations corresponding to acdc, these computations are

similar in nature to the computations of a1 and a2. Hence, the

distribution of these newly added computations follows the

same rules and would not create an imbalance in the modified

distribution.

C. Generalization of Robustness
This section extends our simple scenario, where each device

computes only one output element, to a more realistic scenario,

where each device computes hundreds of elements. Similarly,

we showcase the output-splitting method as our example.

Assume an FC layer performing the below equation:

⎡
⎣

w11 w12 ... w1k
w21 w22 ... w2k

...
...

. . .
...

wm1 wm2 ... wmk

⎤
⎦
m×k

×

⎡
⎢⎣

a′
1

a′
2

...
a′
k

⎤
⎥⎦
k×1

=

⎡
⎣

a1
a2

...
am

⎤
⎦
m×1

. (4)

By distributing the computations among two devices, each

of the devices performs the computations for m/2 of output

elements. The computations per each device are

⎡
⎣

w11 w12 ... w1k
w21 w22 ... w2k

...
...

...
. . .

...
wm

2
1 wm

2
3 ... wm

2
k

⎤
⎦

m
2 ×k

×

⎡
⎢⎣

a′
1

a′
2

...
a′
k

⎤
⎥⎦ =

⎡
⎣

a1
a2

...
am

2

⎤
⎦ , and (5)
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⎡
⎣

w(m
2

+1)1 w(m
2

+1)2 ... w(m
2

+1)k

w(m
2

+2)1 w(m
2

+2)2 ... w(m
2

+2)k

...
...

...
...

wm1 wm2 ... wmk

⎤
⎦×

⎡
⎢⎣

a′
1

a′
2

...
a′
k

⎤
⎥⎦ =

⎡
⎣

a(m
2

+1)

a(m
2

+2)

...
am

⎤
⎦ (6)

in which input matrices are the same, but the weight matrix

is divided along the y-axis. Each device creates separate parts

of the output matrix. To introduce robustness, the new weight

matrix would be as follows:
⎡
⎢⎣

w11+w(m
2

+1)1 w12+w(m
2

+1)2 ... w1k+w(m
2

+1)k

w21+w(m
2

+2)1 w22+w(m
2

+2)2 ... w2k+w(m
2

+2)k

...
...

. . .
...

wm
2

1+wm1 wm
2

2+wm2 ... wm
2

k+wmk

⎤
⎥⎦

m
2 ×k

. (7)

By multiplying this new weight matrix with inputs, the below

output matrix is created:⎡
⎢⎢⎢⎣
a1 + a(m

2
+1)

a2 + a(m
2
+2)

...
am

2
+ am

⎤
⎥⎥⎥⎦

m
2
×1

, (8)

which is is the summation of two output matrices in Equations 5

and 6. Therefore, by introducing such a weight matrix as

Equation 7, we can introduce robustness. Similar to our simple

example, the computation of new weights is done offline,

recovery has a close-to-zero latency, the robustness covers

all devices, and the new computation is balanced. In contrast,

splitting methods that divide the input matrix among the devices

do not yield similar benefits. To illustrate why, we study input

splitting among two devices for the computation of the FC

layer in Equation 4. Input splitting for FC layers divides the

input and the weight matrix along the x-axis. Accordingly, the

computations per device are from Equations 9 and 10.
Each of these equations calculates a partial sum. However,

as seen, no share factor exists between the two computations.

Therefore, to perform coded distribution, a third device needs

to perform the entire calculations of Equations 9 and 10,

which creates unbalanced work between the devices and has

no advantage over just replicating the entire work as modular

redundancy methods do.⎡
⎢⎢⎣

w11 w12 ... w
1 k
2

w21 w22 ... w
2 k
2

...
...

. . .
...

wm1 wm2 ... w
mk

2

⎤
⎥⎥⎦
m× k

2

×

⎡
⎢⎢⎣

a′
1

a′
2
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a′

k
2

⎤
⎥⎥⎦

k
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=

⎡
⎣
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⎤
⎦
m×1

(9)
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⎡
⎣
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⎦
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(10)
Distribution Techniques Suitable for Robustness: Based on

our discussion, among the distribution methods for DNNs,

only some are suitable for our CDC-based robustness. Such

suitable methods do not split the input elements but split the

weights. Table I provides a summary of all the presented

methods and whether they are suitable for robustness. For FC

layers, the output-splitting method is suitable for robustness.

TABLE I: Distribution Techniques Suitable for Robustness.

Layer
Distribution Divides Divides Divides Suitable for

Method Input Weight Output Robustness

fc Output � � � Yes
Input � � � No

conv
Channel � � � Yes
Spatial � � � No
Filter � � � No

For convolution layers, the channel-splitting method has similar

characteristics. Unfortunately, the rest of the distribution

methods are not suitable for robustness because to introduce

robustness, they need to perform the entire computation again,

which causes communication overhead. For instance, in spatial

splitting, although every device has all the weights, they only

own some part of the input. Therefore, with our technique,

we need another device to perform the computation based

on the summation of the input parts. Since input elements

change, computing such a summation has an overhead during

the runtime (2x compute). The filter-splitting method also

suffers from the fact that no element from the input or weights

is shared between computing devices.

IV. EXPERIMENTS

Experiments Setup: We evaluate our method on a distributed

system with RPi with 1.2 GHz Quad Core ARM Cortex-A53

CPU and a 900 MHz 1 GB RAM LPDDR2 memory. We

choose RPi because they represent the de facto choice for

several IoT systems, they are readily available, and they allow

common software packages. Our implementation is created

with a software stack based on Docker containers. We use

Keras 2.1 with the TensorFlow backend (version 1.5). For

RPC calls and serialization, we use Apache Avro. A local

WiFi network with a measured bandwidth of 94.1 Mbps and a

measured client-to-client latency of 0.3 ms for 64 B is used.

Task Creation & Assignment: The policy of task creation

in IoT-based distributed DNN systems is done with either

profiling or heuristics that use common monitoring/managing

tools such as Kubernetes. The policies create tasks per device

for a given DNN by studying its memory footprint, computation

requirement, and communication overhead. Regardless of the

policy that finds the optimal distribution (out of the scope of

this paper, see [4]), all the pre-trained weights are loaded to

each device storage so that a device can switch its assigned

task easily if needed. For each number of available devices,

a single task allocation file is loaded to all devices and each

device performs its allocated tasks based on the file. We use

an IP table file to assign tasks to each RPi. CDC weights are

also created offline and loaded to the storage. In the case of

a failure, the system uses another pre-defined distribution file

with fewer devices that has a lower performance. In such a

case, since the detection of a missing device takes time, the

system mishandles many requests. Our proposed solution has

tolerance to such failures, so the system never loses a request.

Additionally, with a close-to-zero recovery latency, the system

proactively is more tolerant to straggler nodes.

Weight Storage: Each Pi has an SD card storage, for storing

the weights, which is relatively inexpensive compared to the
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Fig. 8: Case study I: AlexNet on a five-device system.
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Fig. 9: Case study I: Recovery latency with & without CDC.

main memory. All trained weights are loaded to each Pi’s

storage (16 GB storage in our system), so each Pi can be

assigned to execute any part of a layer. If local storage is

limited, the assigned weight can also be shared on the network

from a network-storage filesystem. This approach makes a

tradeoff between how fast the switching time between different

models can be and per-device storage usage. Additionally, note

that the distribution method does not replace other methods,

such as offloading to servers. The decision is on a per-case basis

and depends on several system-level decisions. The distribution

offers the additional option of processing data locally.

A. System Recovery Case Studies

Case Study I: To depict the impact of how failures affect

a system, we deploy AlexNet [17] on two IoT systems. The

first system (Figure 8a) contains five devices. The first fully-

connected layer is split with the output-splitting between

two devices with no robustness method. The black bars in

Figure 9 show the latency of the system when performing

single-batch inferences. If device C experiences failure, as

shown in Figure 8b, other devices need to perform the task

assigned to the failed device. Since device C computes half of

the first fully-connected layer, device D needs to perform this

extra task. After the failure is detected, which takes tens of

seconds, the red bars in Figure 9 depict the new shifted latency

histogram of the system. Based on our measurements, on

average, the system experiences 2.4x slowdown after recovery.

The system does not perform beneficial work during failure

detection and experiences a significant slowdown afterward.

However, with our method, the system does not experience

any slowdown or service interruption.

Case Study II: As a remedy to failures, we deploy AlexNet

on a six-device system. Figure 10a shows this system, in

which an extra device is added for robustness using CDC.

Note that our goal is to create robustness only for the first
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Fig. 10: Case Study II: AlexNet on a six-device system.
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Fig. 11: AlexNet latency histogram without straggler mitigation.

Arrival Time (ms)

Fig. 12: AlexNet latency histogram with straggler mitigation.

fully-connected layer and the extra device provides robustness

to all the computations done on devices D and E. If we

experience failure (Figure 10b), the performance of the system

does not change. Additionally, during the operation without

failure, we use the extra device to mitigate the straggler

problem. Figures 11 and 12 show the system latency with

and without this mitigation, respectively. As shown, the range

and the distribution of latencies are improved towards a better

performance. Thus, in addition to robustness, we can exploit

the extra device to increase the performance.

B. Straggler Mitigation

We study straggler mitigation benefits by extending the

previous system. To initiate recovery, a device waits for a

particular amount of time. By adjusting this waiting threshold

in a device, we can treat our method as a solution for the

straggler problem after receiving the necessary amount of

data. A lower threshold reduces latency and thus increases

performance. The straggler problem is more prominent with

more devices, so we set up an experiment for a system with four

devices, each of which performs a split in a fully-connected

layer (Figure 13a). Figure 13b shows performance improvement

of straggler mitigation with a diffident number of devices.

The performance improvement is compared with the same

system, with the same number of devices, and with no straggler

mitigation. As seen, for more devices, straggler mitigation has

better performance (up to 35%) compared with a no-straggler-

mitigation system with the same number of devices.

C. Full Model Coverage

In the system in Figure 10, devices with model parallelism

are robust with CDC. For other devices, by replicating the

device’s task (N-modular redundancy with N = 2, or 2MR),

we can tolerate one failure. A hybrid approach (CDC+2MR) can

cover the system for failures. Our method covers any number

of devices in one layer with just one additional device (for
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Fig. 13: Straggler mitigation study. (a) A system setup for four devices.
(b) Straggler mitigation performance.
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Fig. 14: Full model coverage studies.

robustness to one failure). However, 2MR requires an additional

device for each device, resulting in a linear number of additional

devices. Our method has a constant cost with an additional

number of devices, whereas 2MR requires a linear number

of additional devices. Figure 14 examines several DNNs [18]–

[20] with distributed implementations, showcasing tolerance

to one failure with 2MR-only and CDC+2MR. Since CDC

requires fewer devices than 2MR to cover devices with model

parallelism, the number of additional devices for full coverage

in CDC+2MR is smaller than that of 2MR. The amount of

difference depends on the number of layers distributed with

model parallelism and the number of devices used per layer.

For example, Figure 14c and d depict two C3D distributions

with different numbers of devices for the layers utilizing model

parallelism (two vs. three devices). In Figures 14c and d, with

two additional devices, CDC+2MR achieves coverage of 67%

and 73% compared to 2MR’s coverage of 44% and 36%. This is

because C3D distribution has two layers with model parallelism.

Therefore, CDC+2MR achieves better coverage compared to

2MR. To summarize, by utilizing model parallelism for a layer

with N devices, our method allows hiding a single node’s

failure at a cost of (1+ 1
N ) times the hardware cost, as opposed

to 2MR’s cost of 2x hardware.

V. DISCUSSIONS

The Introduced Computation: The introduced new com-

putations for our CDC-based method are similar to that of

underlying GEMM computations. This is because the newly

added weights are added to the weight matrix and can be

calculated without the user’s input at the library level. Therefore,

there are no additional costs for reprogramming the applications.

Moreover, since the nature of the computations for these new

weights is similar to that of DNNs, there is no need to design

new kernels or distribution methods.

Extending Robustness to More Failures: Our discussions

focused on tolerating up to one failure. However, Extending to

more than one failure is possible by adding new devices that

compute based on the summation of some rows of weights

instead of all. Figure 15 illustrates three setups in order of

increasing tolerance to failures. The last setup tolerates two

failures because new devices perform partial sums on the

weights.1 Thus, by utilizing idle devices with an overlapping

set of weights, the system’s robustness increases.

VI. RELATED WORK

CDC [13] introduces coding for MapReduce-type workloads

for large-scale computing. By coding, which increases the

1 Note that the coverage to two failures is almost complete (partial error
correction). We need Hamming-style coverage for full error correction.
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Fig. 15: Tolerating multiple failures.

computation of mapping functions, communication can be

reduced in the reduction phase. The authors of the CDC

theoretically study the limits and trade-offs of such distribution

and illustrate an inverse relationship between the amount of

computation and communication. Usually, coding in CDC is

applied over bit-level representation of numbers. Instead of
coding over floats/bits, we apply coding to the application
level by introducing new weights. Furthermore, in contrast, to
reduce communication overhead in other studies, our goal is
to increase robustness and tolerate unstable latencies. CDC

helps mitigate the straggler problem in computing clusters [21],

[22], besides other methods such as straggler detection algo-

rithms [23], [24] and replication-based approaches [25], [26].

Several studies also utilize CDC to mitigate the straggler prob-

lem in distributed storage systems [27]. Distributed learning

algorithms have also used CDC opportunities [14]. Since these

algorithms use data parallelism for learning, CDC facilitates

the mapping phase in learning algorithms with data shuffling.

Particularly, Lee et al. [14] focused on two basic blocks of

learning algorithms, matrix multiplication, and data shuffling.

None of the above works has studied CDC in the context
of robustness. In contrast with our work, distributed learning

studies [14] examine large-scale learning algorithms, which

employ data parallelism, whereas our work focuses on IoT-
based inferencing, which utilizes model parallelism.

VII. CONCLUSION

We proposed a method to introduce tolerance for the

single-batch inferencing of DNNs, a key operation in IoT. Our

method exploits model-parallelism methods in prevalent DNN

layers to add balanced computation for robustness. Model

parallelism helps us achieve efficient system distribution. We

extended CDC to provide a trade-off between computations

and robustness on distributed IoT.
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