Creating Robust Deep Neural Networks
With Coded Distributed Computing for loT

IEEE Edge’23
July 2023
Ramyad Hadidi® Jiashen Cao Bahar Asgari? Hyesoon Kim
Rain Al Georgia Tech University of Georgia Tech

Maryland

§ This work was done when these authors were affiliated with Georgia Tech.

Internet of Things (loT) Devices

Record an abundance of various raw data types and
must act in real-time on this data

 Therefore, they must understand it with their
limited resources of power and compute

Emergence of DNN on |loT

With deep neural networks (DNNs) loT devices can
* Process several new data types and
 Understand behaviors

However, DNNs are resource hungry
e Cannot met real-time constraints

e Several DNNs cannot even be executed

Solutions — Cloud/Fog

Offload to cloud/fog, but this is not always a solution

* Unreliable connections to the cloud
* What happens when device is disconnected

 Low bandwidth and high latency
* No real-time processing

* Privacy concerns of personal data
 Hard to guarantee privacy of users
 New features such personalization and

domain adaptations are hard to implement with
this model

Solution — loT Collaboration

Distribute computations of a single inference*

 Deployed after DNN optimizations for embedded
devices such as compression and quantization

* Achieves linear speed up with number of devices

Not Dependent on Cloud | Privacy Preserving

o [ITTTT @
s © A
J
|._9 \ Home
"_9 Network g
m
LR
II—?’ i Alerts User \

Computatlon Domain

* R. Hadidi, Deploying Deep Neural Networks in Edge with Distribution, PhD Dissertation, Georgia Tech Library

0T Collaboration Challenges

* Susceptible to unstable latency and straggler problem
* Intermittent device failures
» Susceptible to losing part/all of data

* Devices may become busy with other tasks, such as

user interaction

* High recovery overheads with traditional methods

Unreliable Latencies

Challenges

Histogram distributed version of AlexNet’s final fully-

connection layer in 4-node system

Compute Time

Tail Latency

Data Points

Latency

Computation

50ms
<100ms
<150ms

34%

42%

Z
500

300 350 400 450

Arriaval Time (ms)

100 150 200 250

50

0.000

Unreliable Latencies

Challenges

Histogram distributed version of AlexNet’s final fully-

connection layer in 4-node system

Compute Time

Tail Latency

Data Points

Latency

Computation

50ms
<100ms
<150ms

34%

42%

Z
500

300 350 400 450

Arriaval Time (ms)

100 150 200 250

50

0.000

(

)

Long Tail and Max Latency - Straggler Problem

Challenges: Accuracy Drop

Even small packet drops are destructive for DNNs

Accuracy

(top-1)
[—N-N-N-W
NS OOWO
I

=3

(@]

=5

)

Q

%

-}

oqQ

o

wm

wm

O > ® Y 0 A0 A% D 4V 20 © & @ YV O O > @ AV AO D DD N

Percentage of Data Loss (only in one layer)
(a) 10-class digit recognition (LeNet-5)

Challenges: Accuracy Drop

Even small packet drops are destructive for DNNs

Accuracy
(top-1)

Accuracy
(top-1)

Accuracy
Drop

10 <
0.8
0.6

g-‘zi Increasing loss

0'0 I T 1
S > @ V0D A DA O PO S @AAC D P> P D P
Percentage of Data Loss (only in one layer)

(a) 10-class digit recognition (LeNet-5)

1
08 |

0.6 Accuracy
0.4 :

0.2 Increasing loss Drop

' >

0 T I I I I I I I I I I I T T I I I T T 1
S > @ WO D A DA D PO D> @AA D > D P
Percentage of Data Loss (only in one layer)

(b) 1000-class image recognition (Inception-v3)

10

Challenges: Accuracy Drop

Even small packet drops are destructive for DNNs

(1)-2 = Accuracy
%) 0.6 _ Drop
© = 04 Increasing loss
55 02
8 :’ 0'0 I T 1
< PPN AP PP RPN PSPPI FS

QO Q QO QO QO QO QO QO Q07 Q07 QO O QO Q07 Q7 QO QO QO QO QO QO Q" QO Q07 O N
Percentage of Data Loss (only in one layer)

. (a) 10-class digit recognition (LeNet-5)

0.8 |

0.6 Accuracy
0.4 :

0.2 Increasing loss Drop

' >

0 T T TrTrrrTrrr1rrTT1 11T 17T 17T 17T 17T 17T T 1T T T T T T T T T T T TT rrrrrrrrrrrr—r1r 1 T T T
O > ® &V 0 0O A D) 40 © > @ VOO > @AY A D > P NP

Percentage of Data Loss (only in one layer)

[High accuracy drop for complex data]

Accuracy
(top-1)

11

-

There is a need for distribution methods that
are more efficient and robust for DNNs

~

12

Our Solution

We propose a hovel robustness method repurposing
Coded Distributed Computing (CDC)*

* Close-to-zero recovery latency for DNN computations
(Never spending time to recover from a failure)

* Achieves lower latency by removing stragglers

* Minimal changes to the program

* The cost remains constant even as the number of
devices to cover increases

* Li, Songze, et al. "A fundamental tradeoff between computation and communication in distributed computing." IEEE
Transactions on Information Theory 64.1 (2018): 109-128.

13

Steps to Reach to Our Solution

e How DNN computations are transformed to matrix-

matrix multiplications?

* How does distribution affect this matrix-matrix
multiplications performed on each device?

e What is coded distributed computing (CDC)?
* How to apply CDC to matrix-matrix multiplications?

 How does this solution achieve better latency and
recovery times?

14

Steps to Reach to Our Solution

e How DNN computations are transformed to matrix-

matrix multiplications?

* How does distribution affect this matrix-matrix
multiplications performed on each device?

e What is coded distributed computing (CDC)?
* How to apply CDC to matrix-matrix multiplications?

 How does this solution achieve better latency and
recovery times?

15

Using CDC for Robustness

A simple example to showing the main insight

Add column-wise summation of the weights:

{

|

w1l
w21
w1 + w21

wii
w21

cdce

w.q

wi2

w22

wi2

w22

/
X [7
cdce :
w.o

X {
w12 + W22

The new weights are constant, so added offline

aj
a-

cd
)

al
a9
ay + as

c

A

|

e \We can recover one failure since we have the
summation (i.e., performing one substruction)

Distributed DNNs

Each layer’s computations can be represented as
matrix-matrix multiplication (GEMM kernels).

Fully-connected

layer:
2 .
. WH "5 wh
Conv. :
layer: >
ayer: K : * % = g

Wisree X Ipeoxwny = Ok xwhH

17

How to Distribute CDC and Benefits

Add column-wise summation of the weights.

Benefits:

Recovery
Local Subtraction vs. (Transmit + Multiplication)

Addition of one device covers all computations

Introduced computations are similar on nature to
DNNs

O O O cupuspi
Output Splitting for 4 nodes

IDIDY One Failure Tolerance

A [TSy] >< []
O O OO L=
Output Splitting for 5 nodes
LEX XX Two Failures Tolerance

18

Straggler Mitigation & Failure Coverage

(o)) "E 40
o [
Do not need to wait for all S £ 28 g
devices to send data: £ % 10 % é
(AlexNet) £ g_ 0 Lem
8 E 3 4 5 6

Number of Devices

19

Coverage (%)

Straggler Mitigation & Failure Coverage

100
80
60
40
20

(o)) "E 40
o [
Do not need to wait for all S £ 28 %
devices to send data: £ % 10 % g
(AlexNet) £ g_ 0 Lem
8 E 3 4 5 6

Number of Devices

Better Coverage versus with 2-modular redundancy (2MR)

—@—CDC+2MR =& =2MR =@=CDC+2MR =& =2MR

100

80

60

40

20

2 3 4 5 1 2 3 4 5 6 7
#Additional devices for robustness #Additional devices for robustness

—$—=CDC+2MR =& =2MR

100
80
60
40

20

0

1 2 3 4 5 6 7 8 9
t#tAdditional devices for robustness

20

Please check the paper for
more details on

e Distribution methods

e Distribution methods
that CDC would work on

 Formulization
* |Introduced computations

* Extending to more
ailures

Creating Robust Deep
Coded Distributed

Ramyad Hadidi® Jiashen Cao
Rain Al Georgia Tech
ramyad @rain.ai jiashenc @ gatech.edu

Abstract—The increasing interest in serverless computation
and ubiquitous wireless networks has led to numerous connected
devices in our surroundings. Such IoT devices have access to
an abundance of raw data, but their inadequate resources in
computing limit their capabilities. With the emergence of deep
neural networks (DNNs), the demand for the computing power
of IoT devices is i ing. To overcome i) 3
several studies have proposed distribution methods for IoT
devices that harvest the aggregated computing power of idle IoT
devices in an environment. However, since such a distributed
system strongly relies on each device, unstable latency, and
intermittent failures, the common characteristics of IoT devices
and wireless networks, cause high recovery overheads. To reduce
this overhead, we propose a novel robustness method with a close-
to-zero recovery latency for DNN computations. Our solution
never loses a request or spends time recovering from a failure.
To do so, first, alyze how matrix computations in DNNs
are affected by distribution. Then, we introduce a novel coded
distributed computing (CDC) method, the cost of which, unlike
that of modular redundancies, is constant when the number of
devices increases. Our method is applied at the library level,
without requiring extensive changes to the program, while still
ensuring a balanced work assignment during distribution.

Index Terms—Edge Al, Reliability, IoT, Edge, Distributed
Computing, Collaborative Edge & Robotics

I. INTRODUCTION

Recent years have witnessed the emergence of deep neural
network (DNN) applications. Additionally, with the prolifera-
tion of Internet-of-Things (IoT) devices, they became insepara-
ble from our daily lives. The conventional methods to process
raw ToT data are to offload them to cloud services. However,
moving such a tremendous amount of data incurs a high
amount of monetary cost and delay, besides creating a major
concern of privacy leakages. Therefore, serverless and edge
computation paradigms are recognized as promising solutions.
As a result, pushing the frontier of DNNs computations to
the edge is receiving a tremendous amount of interest both
from academia [1]-[9] and from the industry with commercial
edge-tailored hardware accelerators such as NVIDIA Jetson
Nano, edge TPU, and Intel Movidius.

Processing IoT data locally in the edge may suffer from poor
performance and energy efficiency because the computational
demand from DNNs outweighs the computation capacity
and energy constraints of IoT devices. Furthermore, the
computational demands are escalated because these devices
have to meet real-time constraints. Even for edge-tailored

This work was supported in part by the NSF grant number 2103951
3 This work was done when the authors were affiliated with Georgia Tech.

Neural Networks With
Computing for IoT

Bahar Asgari®
University of Maryland
bahar@umd.edu

Hyesoon Kim
Georgia Tech
hyesoon.kim@gatech.edu

hardware accelerators, the real timeliness of applications is
not guaranteed [10], [11]. Nevertheless, privacy concerns,
unreliable connection to the cloud, tight real-time requirements,
and personalization are still pushing inferencing to the edge.
To address the resource constraint challenges, a solution is
to distribute heavy computations among idle devices [1], [2],
[4], [12] because the state-of-the-art IoT networks are formed
with various IoT sensors and recording agents, such as HD
cameras and temperature sensors, many of which are capable
of performing computations. However, such a distribution is
susceptible to failures, from short disconnectivity and user
interaction to losing a device. This fact necessitates developing
a robust method for tolerating these failures. Additionally,
since IoT networks use wireless technology, unreliability and
variability in their networks are much higher than acceptable
limits to ensure a robust system.

We extend studies that enable distributed single-batch
inference of DNNs in the edge [1], [2], [4], [12] to tolerate
failures with close-to-zero recovery latency. We first analyze
general methods of distributing the computations of DNNs
and how their underlying general matrix-matrix multiplication
(GEMM) is affected by distribution. Such a detailed study is
necessary to introduce a general seamless method within the
underlying library or machine learning framework. Then, we
propose a new recovery method based on coded distributed
computing (CDC) that enables distributed DNN models on
IoT devices to tolerate failures. Our method is inspired by
CDC applications in big data analytics [13], and speeding up
distributed learning using codes [14].

To enable robustness in distributed IoT, we introduce an
extra coded computation per device. We propose a novel fault
recovery method based on CDC that has close-to-zero recovery
latency, does not disturb the balanced work assignment in
distribution, requires minimal changes to the program, and
has a constant cost with the increasing number of devices.
Our introduced extra computations are derived by thoroughly
analyzing how general methods of distributing the compu-
tation of DNNs affect their underlying GEMM. The added
computations are similar in nature to those of DNNs, which
eases balancing the work among IoT devices and reduces the
deployment cost. Balanced distribution is essential in attaining
the expected performance. Additionally, since our method is
implemented at the library level, it does not require changes to
the program. Moreover, unlike approaches that sacrifice latency
for robustness to recompute the missing part of the data, our

21

Backup Slides 22

Future Work

Same concept for robustness and speedup is also
applicable for distributed commutating between

* Chip to chip (PCle)
* Die to Die (UCle)
* Processing Elements (Network on Chip)

23

Coded Distributed Computing (CDC)

Designed for MapReduce workloads (2018)

Preforming redundant or coded computer per node

to reduce communication
L(r)

This work: DNNS on loT

More Compute / Node
More Reliability

Communication Load

X7 K
Computation Load

24

CDC for Distributed DNNs (FC)

Methods distributing computation of a model*

R
- W11 Wi2 ... Wik - aq

a
n w21 w22 ... W2k aé a;
w31 w32 ... W3k
1 Qutput a! a3
G>J. p X 3 = .
o| splitting: :
— ~ Wm1 Wm?2 ... Wmk=- mXk a/ am mx1
—c Y%k - kx1
Q Weights Inputs Outputs
"CS Several in-between (divided among nodes) (every node needs a copy) (each node independently)
((D] variants 5
- [/ - - [daq]| .
- - W11 W12 ... Wik - aq 1
- wo1 W22 ... Wk a/ aq
8 w31 W32 ... W3k 2 [Sam | s o
I Input s X | 9| = S S
= > 6a1 ._ :
S| splitting: : S
L L W1 Wm2 ... Wk - / :
m m m mXk L ay, - x1 L Loam]y
Weights Inputs Outputs
(divided among nodes) (divided among nodes) (each node calculates partial sums)

Same can be applied on convolution layers*

* R. Hadidi, J. Cao, M. S. Ryoo and H. Kim, "Toward Collaborative Inferencing of Deep
Neural Networks on Internet-of-Things Devices," in IEEE Internet of Things Journal,

CDC for Distributed DNNs (conv)

Same can be applied on convolution layers

Input (3D matrix) Output (3D matrix)
W,
W; o
& Filters (4D matrix) //‘b/|
oS Qo
_* L] [[CZ F ~
F

X : —

CDC for Distributed DNNs (conv)

Conv to GEMM

2 .
Ll WH "S5 wh
‘m
K . X I — K

@) Wixr2o X Ipzoxwy = Oxxwi

First patch, D First filter, unrolled First channel, Output is also
unrelled F20 unrolled J¢ unrolled in 2D

S

ce. | T
- =

=~
=

) Iwaxr2c X Wreoxx = Ownaxk

27

CDC for Distributed DNNs (conv)

Same can be applied on convolution layers*

__

- e - - - - - - - - e e e - - - - - - - e G G G G G e - S S e e G G G G e e - - e e G e - - - — — — — — —

__

- e e e - - - - - - - e e e - - - - - - e e S e G G e - S S S e e S G - G e - - e e e e e - - - - — — — — —

Channel Splitting

28

CDC for Distributed DNNs (conv)

Same can be applied on convolution layers*

i 20 WH2 WH2
| S

: e WH)?2 L WH2
B -

Spatial Splitting

-— e -

—-— e - - —— —— —— —— —— — -

29

CDC for Distributed DNNs (conv)

Same can be applied on convolution layers*

- = e - e - e = - - - = = = - = - e = e e - = - e = = = - = - = e - = @ e e = = = = =y

: F2c WH |
::::::::5‘ |
I S |
' = O |
| -ZZ---:c-: -
K 7K o LU — |
E B :
I S i R E A ;
X v :
P el 4+ = I
|
| F2C wg by |
I £oozoooIs CTGIITT TS
I FSZzooIos ERREREEE |
| R o|iiiin |
| E--z-z-z-czz=: ey | |rrrrrinn - |
: K > S Y — :
| |
\ e b1 et e e e |
\)

Filter Splitting

Formula

Multiple out/device: Just create a new weight matrix

[\V11+\V(%+l)l \V12+\V(%+1)2 \V1k+\\!(%-Fl)k)
w21+w(%+2)1 w22+w(%+2)2 w2k+w(%+2)k
\Vm +\Vn11 \Vm. +\Vn12 ce e \Vﬂ '+\V .
2 ! 2 2 g kTmk [mo g

AlexNet w/o & w Straggler Mitigation

I Mean: 1019 ms
I Stdev: 390.77 ms

0.004

0.000

1000 1200 1400 1600 1800 2000
Arrival Time (ms)

800

600

32

I Mean: 929 ms
I Stdev: 284.53 ms

2000

1800

0o
1600

1400

Arrival Time (ms)

1200

1000

ANNNINNININRNRNY

800

600

0.004

AlexNet w/o & w Recovery

2000

1800

2046 ms
195.77 ms
1600

Mean
dev

1400

Arrival Time (ms)

1200

836 ms
193.41 ms
1000

Mean
Stdev

800

600

0.004

33

