
Context-Aware Task Handling in
Resource-Constrained Robots with Virtualization

Ramyad Hadidi§
Rain AI

ramyad@rain.ai

Nima Shoghi Ghaleshahi
Georgia Tech

nimash@gatech.edu

Bahar Asgari§
University of Maryland

bahar@umd.edu

Hyesoon Kim
Georgia Tech

hyesoon.kim@gatech.edu

Abstract—Intelligent mobile robots are critical in several sce-
narios. However, as their computational resources are limited,
mobile robots struggle to handle several tasks concurrently
while guaranteeing real timeliness. To address this challenge
and improve the real-timeliness of critical tasks under resource
constraints, we propose a fast context-aware task handling tech-
nique. To effectively handle tasks in real-time, our proposed
context-aware technique comprises three main ingredients: (i)
a dynamic time-sharing mechanism, coupled with (ii) an event-
driven task scheduling using reactive programming paradigm
to mindfully use the limited resources; and, (iii) a lightweight
virtualized execution to easily integrate functionalities and their
dependencies. We showcase our technique on a Raspberry-
Pi-based robot with a variety of tasks such as Simultaneous
localization and mapping (SLAM), sign detection, and speech
recognition with a 42% speedup in total execution time compared
to the common Linux scheduler.

Index Terms—Edge AI, Software, Mobile Robots, Middleware
and Programming Environments, Reactive and Sensor-Based
Planning,

I. INTRODUCTION & MOTIVATION

Unlike conventional industrial or commercialized robots

that perform a set of pre-programmed and routine tasks,

intelligent mobile robots manipulate their environment using

their perception and physical resources to achieve a myriad

of goals. Such robots must be capable of dynamically switch-

ing between navigation, planning, reasoning, recognition, and

sensing their environment. Intelligent robots need to interact

with a dynamic, complex, and non-deterministic world. These

robots must execute numerous tasks such as controlling their

physical resources (e.g., arms), understanding data derived

from sensors, or executing perception and planning.

Intelligent robots are always in a never-ending conflict

between available computation resources, their energy storage,

and the tasks at hand. This conflict is particularly emphasized

in resource-constrained robots because even the concurrent

execution of a few rudimentary tasks is extremely demanding

with only a few processing cores. For example, a Rasp-

berry Pi with only four cores could be fully utilized by the

operation system (OS), processing the data from a single

sensor, and simple navigation and control algorithms. Adding

more sensors and tasks only causes the robot to miss real-

time deadlines. Thus, ensuring efficient handling of critical

This work was supported in part by the NSF grant number 2103951.
§This work was done when the authors were affiliated with Georgia Tech.

tasks and meeting critical deadlines is the key challenge for

resource-constrained robots.

To extend the capabilities of resource-constrained robots and

meet real-time demands, the common practices are adding

extra hardware or utilizing cloud/fog computation [1]–[7].

However, in several scenarios, adding new hardware is either

infeasible or uneconomical. For example, adding extra pro-

cessing units to a lightweight drone requires heavier batteries,

which in turn demands stronger motors. Further, cloud and fog

are not always available. Additionally, privacy concerns limit

the suitability of cloud-based computation.

To enable intelligent mobile robots to efficiently utilize

limited resources, we propose a context-aware task handling

technique that simplifies the world and planning tasks by

dynamically reducing the number of tasks in a certain context

to only the critical ones. For example, limited human-robot

interaction is expected while the robot is performing an already

assigned task. This technique enables resource-constrained

robots to efficiently perform manifold functionalities while

meeting their real-time constraints.

To be effective in handling tasks using our context-aware

technique, we propose using a virtualized execution that (i)

integrates several tasks while providing dynamic, low-cost, and

kernel-level control over the scheduling policy; (ii) enables

easier context-aware implementation by providing manageable

control over tasks; and (iii) provides a uniform and practical

environment for building new robots in the community.

For experiments, we use a custom-built Raspberry-Pi-based

robot using an iRobot Roomba [8] equipped with one Rasp-

berry Pi 4 (RPi4) [9] as the only processing unit. Our

iRobot, shown in Figure 1, has several sensors (i.e., LIDAR,

inertial measurement unit (IMU), cameras, and microphone),

and control devices (i.e., motors for navigation, robotic arm,

and speakers). For software, we use Docker [10], a popular

virtualization tool, and implement our context-aware technique

to collect and process sensor data, simultaneous localization

and mapping (SLAM), voice recognition, and sign recognition.

Our contributions are as follows:

• Context-aware task planning to effectively use the limited

resources and hence extend the number of tasks that a

robot can handle.

• OS-level dynamic time-sharing to implement the context-

aware scheduling in real-time.

255

2023 IEEE International Conference on Edge Computing and Communications (EDGE)

2767-9918/23/$31.00 ©2023 IEEE
DOI 10.1109/EDGE60047.2023.00047

Ramyad
Author’s Copy

LIDAR

Arm

Stereo
Camera

(front)

C
am

er
a

(s
id

e)

S
p

ea
ke

r

Internal

Raspberry Pi

Mic
IMU

Lidar

IMU

Stereo Camera

Robotic Arm

Side Camera

Side Camera

Microphone

Navigation Motors

Speaker

Fig. 1: Modified iRobot with RPi4 and additional sensors.

• Event-driven task scheduling to be mindful of using the

limited resources for scheduling itself.

• Lightweight virtualized execution, using Docker and reac-

tive programming paradigm to enable easily manageable

and yet kernel-level dynamic task scheduling policy.

II. RELATED WORK

Real-Time Operating Systems & Scheduling Polices: The

operating system (OS) schedules applications either based on

the order of the events (event-driven), order of processes (e.g.,
round-robin), or time sharing. To minimize the latency of

accepting a process real-time operating system (RTOS) has

been designed. RTOSes have preemptive schedulers [11] (e.g.,
fixed-priority preemptive scheduling). Since optimal schedul-

ing is an NP-complete problem [11], [12], even RTOSes can

not guarantee hard deadlines. Therefore, hard real-time robotic

systems usually either implement fixed schedulers (e.g., com-

mercial drones) or use extra dedicated cores to provide enough

computation performance. As neither solutions align with our

goal of context-aware task handling using limited resources,

this paper tunes the OS scheduler (Section IV-C).

Robot Operating System (ROS): Robot Operating System

(ROS) [13] is a popular example of a robotic environment

to manage the complexity of various aspects of robotic

systems, from simulation to hardware implementation. ROS

also manages the process execution, while providing stand-

alone libraries for hardware components. As ROS does not

offer real-time operations, ROS2 has been upgraded to handle

hard real-time tasks [14] by prioritizing real-time threads and

avoiding the sources of non-determinism such as memory

allocation [15]. Nevertheless, ROS2 does not support dynami-

cally changing priorities in runtime. Moreover, ROS2 requires

additional kernel support [16], still in early development.

III. DECONSTRUCTING TASKS

To design our context-aware task handling, we first cate-

gorize tasks as the following: The first category is elemental
or atomic tasks that consist of a single event. The second

category, compound task, is decomposed into multiple steps

Sub-Task
keyword spotting
(simple computation)

Capability Constraint
4-core, 700 MB mem

250 ms slice

Sub-Task
record

microphone

Pre-Condition
microphone

Capability Constraint
1-core, 20 MB,
10 ms slice

Capability Constraint
1-core, 100 MB mem

30 ms slice

Sub-Task
speech recognition

(DNN-based)

Speech Recognition Task

Sensors &
Outputs

Pre-Condition
speaker

Chatbot Task

Sub-Task
answer generation

(database based)
Sub-Task

text to speech

Capability Constraint
(removed for brevity)

…
…

Fig. 2: Graph representation for speech recognition and chatbot tasks.
A representation of ({εti}i=1:n, ρt).

or a set of subtasks. To satisfy a compound task, every sub-

task of it must be done. The third category, complex tasks, are

also decomposable into subtasks, whereas to satisfy a complex

task, not all subtasks are required to be done.

The resulting subtasks have a set of relationships with each

other, possible pre-conditions, and capability constraints. For

instance, the pre-condition of executing the speech recognition

task is to have a speech input. In this case, the speech

recognition task has a relationship with speech input. Be-

sides, tasks have relationships with the capability constraint
to execute a workload within a deadline. For instance, to

execute speech recognition effectively, we require full access

to all the cores of the processor and a certain amount of

memory. For a task t, we show such relationships with a

directed graph structure, ρ, the vertices of which are sub-

tasks/conditions/constraints and its edges are the relationships.

Therefore, the pair ({εti}i=1:n, ρt), for a task t, represents all

sub-tasks, conditions, constraints, and relationships. Figure 2

illustrates an example of speech recognition and chatbot

tasks. For instance, keyword spotting processes microphone

recording and requires a single-core and 100 MB memory. A

compiler analysis can extract this graph automatically. In the

following, we present a manual low-overhead approach.

Containerizing Modules: In the first step, each independent

task is wrapped as containerized modules implemented as

Docker [10] containers. Docker implementations are easy to

configure and distribute. Meanwhile, since the lower-level OS

abstraction and common libraries and dependencies are shared,

the overhead of using Docker is minimal.

Adding Event-Driven Initiatives: By using Reactive Ex-

tensions (RX) framework [17], next, the user adds a sim-

ple event-driven initiative for each module. This declarative

configuration sets scheduling scores (more in Section IV-B)

of modules while abstracting low-level implementation (e.g.,
synchronization, thread-safety, concurrent data structures, and

non-blocking I/O). RX provides tools for operating on, filter-

ing, and managing asynchronous streams of data. Such streams

are called observable streams and indicate sensor readings

over time. For example, in the below example, the inertial

measurement unit (IMU) sensor is a single observable stream

256

Re
ac

tiv
e

(in
pu

ts
)

Linux Kernel Scheduler

Docker 1
(IMU)

Dockers (modules)

Inputs & Sensors

IMU Camera Mic

Controller

User Config

Docker 2
(SLAM)

Docker n
(Speech)

Docker 3
(Arm)

Context-Aware

Priority Priority Priority Priority

Publish & Subscribe Communication

Reactive (Dockers)

Fig. 3: High-level system overview.

of accelerometer and gyroscope readings over time. We filter

this stream for receiving readings that have a non-zero vector.

Listing 1: Constructing observable streams for IMU.

1imu.pipe(filter(lambda value:
2value["accelerometer"]["x"] != 0 and
3value["accelerometer"]["y"] != 0 and
4value["accelerometer"]["z"] != 0))

IV. CONTEXT-AWARE TASK HANDLING

To reduce the number of tasks at each moment to only the

critical ones, we propose a context-aware and event-driven
task handling technique, a high-level overview of which is

shown in Figure 3. The implementation is separated into two

groups: (i) the controller, and publish and subscribe com-

munication medium, which manages the dynamic OS-level

prioritizing/scheduling and communications among modules,

respectively, and (ii) the modules that carry out the tasks,

represented as containers, or Dockers. This section describes

the first group, and how they achieve mentioned goals.

A. Publish-Subscribe Communication

Publish-subscribe communication pattern provides an ef-

ficient medium for sending and receiving data. While the

modules are usually isolated and operate independently of each

other, communication is necessary (e.g., when the navigation

requires mapping information from the SLAM). We implement

a lightweight and resource-efficient publish-subscribe system

among modules, in which the events can subsequently be

wrapped with an RX observable stream and fed back into

the controller. This enables inputting any output of a module

to the controller if needed. Additionally, the shared memory

interface is used to share parsed binary information among

applications. This is especially efficient if such information is

already serialized without the extra cost of repacking.

B. The Controller

The controller is a lightweight program for dynamically

setting the priorities of modules based on the context. Based on

added event-driven initiatives (Section III), the controller uses

incoming sensors and modules data to dynamically decide the

best scheduling scores or weights, w. To calculate scheduling

scores, the controller processes the observable streams and

if it detects a context change, it will change the priorities

Sub-Task
keyword spotting
(simple computation)

Capability Constraint
4-core, 700 MB mem

250 ms slice

Sub-Task
record

microphone
Pre-Condition
microphone

Capability Constraint
1-core, 20 MB,
10 ms slice

Capability Constraint
1-core, 100 MB mem

30 ms slice

Sub-Task
speech recognition

(DNN-based)

Speech Recognition Task

Sensors &
Outputs

Contex-Aware
not moving

Fig. 4: The modified context-aware graph representation for speech
recognition with a simple context-aware condition.

accordingly in the Linux kernel scheduler. The calculation

of scheduling scores executes only when the dependent sen-

sor/module values update, saving valuable calculation time on

resource-constrained platforms.

To give users the power to define contexts, the controller

can also receive input from the user with a configuration file.

This configuration file first specifies the relative priority of the

tasks, and second, it may extend the context-aware decisions

in the controller. For instance, the user may specify that no

microphone-related task should run while the robot is moving.

Therefore, the speech recognition task never executes while

the robot is moving, and accordingly, no microphone input is

processed. In other words, the controller dynamically modifies

the task graphs based on sensor events and user configuration,

which leads the system to automatically adapt new scheduling

scores. An example is shown in Figure 4 by modifying the

speech recognition task in Figure 2.

C. Scheduling Policy

In robotics, real-time functionality and scheduling cus-

tomizability are important. However, by default, Linux uses

the completely fair scheduler (CFS, SCHED_OTHER) [18]

to provide an optimal setting for desktops and servers. As

reviewed in Section II, ROS2 requires extra kernel support

for real-time prioritization and still is unstable. To address

these issues, while relying on stable and fully-supported Linux

features, we dynamically tune the parameters of the scheduler

per module as we receive real-time value updates. We apply

this approach with two methods: (i) using CFS policies (i.e.,
SCHED_OTHER) and tuning the CFS parameters of each mod-

ule, and (ii) Using real-time policies [18] (i.e., SCHED_FIFO
or SCHED_RR) and adjusting real-time parameters of each

module. The following provides the implementation details.

1) Tuning the CFS Parameters: In CFS, we use the

cpu-period and cpu-quota flags in modules to cus-

tomize resource allocation. cpu-quota is the total amount of

CPU time that a module can use in each cpu-period. For

this feature, note that the Linux kernel should be compiled

with CFS bandwidth control flag [19]. Additionally, Docker

provides a combined flag, cpus, which allows us to directly

allocate CPU resources to a container.

2) Adjusting Real-Time Parameters: Although Linux real-

time (RT) policies [18] provide a better determinism to pro-

cesses, the policies do not allow changes to the priorities dur-

ing runtime. In detail, in both SCHED_FIFO or SCHED_RR
policies, each process gets a time-slice or exclusive access to

the CPU defined during the process startup (SCHED_FIFO

257

runs real-time processes until it finishes. SCHED_RR builds

on top of SCHED_FIFO by implementing a round-robin

time-slice system based on some priority). To tune real-

time scheduling parameters during runtime, we limit the total

number of microseconds each module runs using Docker at

real-time priority by setting the cpu-rt-runtime with the

controller. This flag is set to a value between 0μs and 1s,

and it represents the total number of microseconds reserved.

We use this feature to use contextual information to change

the real-time resource allocation for each module dynamically.

In summary, using Docker and RX, we are able to create a

dynamic two-level scheduler that is (i) event-based due to the

reactive programming paradigm of the controller, (ii) time-

sharing due to the Docker ability for setting time-slice value

(in our case, through the controller), and (iii) dynamic because

the controller changes the time-slices during runtime based on

the context (supplied by the user and extracted from tasks).

D. Calculating Scheduling Parameters

Here, we describe how the controller calculates scheduling

parameters for each module based on the context. Every

module defines (automatically or from the user) an instantia-

tion function that returns an observable stream representing

the scheduling score as a floating-point value, or wi. This

function can take any RX stream as its input (from sensors

or other modules). When the system starts, the controller

calls all the instantiation functions and creates observable

streams which produce floating-point values representing the

scheduling score. Then, the controller combines all of the

observable streams into a single observable stream. This

aggregated stream is an observable stream that outputs the

entire set of scheduling scores. For each container c with

scheduling score wc (specified by user and/or from context)

received from the aggregated observable stream, we calculate

the scheduling parameters for two scheduling types (Section

IV-C) as follows. For CFS (Section IV-C1), the CPU share

value (cpus), sc, is calculated with the equation below, where

N is the number of processors in the system:

sc = N · wc∑
i wi

. (1)

For real-time scheduler (Section IV-C2), the real-time time-

slice value (cpu-rt-runtime), tc, is calculated as below,

where P is the time-slice period, which is 1s by default:

tc = P · wc∑
i wi

. (2)

The result of the above expression creates a dictionary that

maps each container, c, to its CPU share value, sc or real-

time time-slice value, tc. Note that the aggregated stream is

also an event-driven operation with all the RX capabilities in

filtering not-related events. Thus, the controller only updates

the time slices if it observes any new event.

E. Planning Procedure

The formal definition of context-aware task planning is

described in Procedure 1, the input of which is a list of

Procedure 1: Context-Aware Task Planning.

Input : ConfigFile: Configuration File with Context-Aware Setting
and Relative Priorities of Tasks.

Input : InputList: Input & Sensor List
1 Initial
2 for input ∈ InputList do

// Create observable stream.
3 stream ← CreateStream(input);

// Instantiate scheduling score function.
4 InstantiateRX(stream);
5 AddToList(stream, StreamList);

6 for context ∈ ConfigFile do
// Create context task graph.

7 graph ← CreateTaskGraph(context);
// Create combinator observable stream

8 contextStream ← CreateStream(graph);
9 AddToList(contextStream, TaskGraphList) ;

// Initialize an initial scheduling policy.
10 InitializeScheduling ;
11 return StreamList TaskGraphList

// On receiving an event on any stream after its bound
reactive function.

12 Event-Based Procedure
13 OnObservableStreamEvent stream

// Calculate scheduling score for the stream.
14 CalculateScore(stream) ;

// Calculate new real-time time-slices values.
15 DictTimeSlices ← CalculateTimeSlices() ;

// Update the scheduler.
16 UpdateScheduler(DictTimeSlices);

inputs and sensors (InputList) and a configuration file

(ConfigFile) that describes context-aware customization

defined by the user and relative priorities of tasks. Initially,

at lines 2–5, the system creates observable streams for each

input, and instantiates their scheduling score functions. At

lines 6–9, by reading the configuration file, the system creates

a task graph, similar to Section III and Section IV-B. The

graph generation is out of the scope of this paper and we

reuse the common methods from robotic development envi-

ronments [13]. After initializing the scheduler at Line 10, the

processor only updates its setting based on the arrival of new

events. On arrival of such an event that triggers the RX, the

controller calculates a new scheduling score (Line 14) for

that module, calculates a new dictionary of modulus and their

scores at Line 15 based on Equations 1 or 2, and updates the

time-slices in the OS scheduler at Line 16.

V. MODULE IMPLEMENTATIONS

This section provides implementation details of our specific

tasks and their respective dataset.

1) SLAM: With a stereo camera input (Minoru3D [20]),

we run the ORB_SLAM2 [21] algorithm to localize the

robot within its local environment. We use the EuRoC MAV

dataset [22]. In addition to providing a stereo video input and

ground truth values for error calculation, the EuRoC MAV

dataset provides IMU sensor readings with accelerometer and

gyroscope readings. This sensor data is used in deciding the

scheduling of the SLAM module. Because of the computation

demand of IMU, we implement its calculation on a separate

module. These readings are fed into the controller, which

creates an observable stream for each. Other modules (e.g.,
SLAM) then subscribe to these observable streams.

258

2) Sign Detection: The robot processes the images from its

side cameras and uses a pre-trained neural network (trained on

Street View House Numbers (SVHN) dataset [23]) to decide

the room/street number for the signs. For experiments, the sign

detection module is using the SVHN dataset test inputs.

3) Speech Detection: The robot processes the microphone

input from a microphone and uses the CMU Sphinx library

(specifically, CMU PocketSphinx framework [24]) for key-

word spotting and later a DNN-based implementation [25]

to convert the speech to text. The speech detection module

is using the Speech Commands dataset [26]. This dataset

includes a labeled set of various spoken commands.

4) Navigation & Arm Control: For navigation, we send

commands in the format specified in iRobot Create 2 Open In-

terface [27] through a serial port on iRobot. We also read sev-

eral sensors and battery conditions using this serial port. The

navigation commands set the speed of each wheel separately.

Besides, for obstacle detection, we use a low-cost LIDAR

sensor (360◦ laser range scanner [28]). The LIDAR provides

a 360-degree scan field, 5.5hz/10hz rotating frequency with

an 8-meter ranger distance. We build a simple robot arm that

works with Raspberry Pi on top of our robot [29]. The arm

has simple grips and four servos to control. The module sends

control commands to the arm to move and grab.

VI. EXPERIMENTS

We use iRobot Roomba [8] as our base navigation robot

(Figure 1). We equip the robot with one Raspberry Pi 4 [9].

The power source of the Pi is derived from the battery of

iRobot with a voltage converter. The computation platform

for all the modules is Raspberry Pi.

A. Experiment Design & Reproducibility

In our experiments, each task executes a pre-labeled dataset

while we measure its performance as the controller adjusts the

scheduling parameters dynamically. We use the default Linux

scheduler (CFS) as the baseline and run context-aware (CA)

configuration with two CFS and RT Linux schedulers (Section

IV-C), CFS CA and RT CA. To perform a fair comparison with

the same set of experiments, we build an instrumentation tool,

which uses a set of JSON files as timelines to artificially feed

dataset inputs at certain times. In this way, we can execute the

same set of experiments repeatedly with different schedulers.

The timeline files are collected and constructed from a set

of experiments from the measurements of the real robot. Each

timeline file contains a series of inputs (e.g., images for SLAM

and audio for speech recognition, or arm control commands)

and their respective ground truth values (if any). We use these

files to feed events to the controller while it calculates the

parameters for the scheduler. We design experiments with

different granularity, which includes all the implemented tasks
in Section III. Our first experiment, exp1, is the longest

experiment with a total of three minutes of footage, while

exp2 and exp3 experiments are with shorter duration, one

minute and 15 seconds, respectively.

��
�

��
��

�

�������	����
���	��� �
�	����
�	 ��
���	��� ��	����������

�
�	�����
�	 ��	����������

�	

��
��

��

��
��

��

�

���

���

���

���

�

�
��

��
��

���� � ���������	�!

�

���

���

���

���

�

�
��

��
��

"��#���$��� $%���&�'���	(����	

Fig. 5: Normalized scheduling scores (weights) in a simple exper-
iment with SLAM and speech recognition, (a) with CFS scheduler,
and (b) with RT scheduler. Colored regions show the two phases
of event-driven and context-aware philosophies with a timeline of
sample frames in the footage (c).

B. Experimental Results

1) Proof of Concept: To understand the intuition behind

context-aware task handling, we present a proof-of-concept

experiment. Figure 5a illustrates normalized scheduling scores

(weights) with CFS scheduler for two main tasks, SLAM

and speech recognition (and more sub-tasks such as camera

and microphone inputs). The timeline, shown in Figure 5c,

includes example footage from the EuRoC dataset with the

addition of speech sounds, the beginning half of which has no

movement. The context configuration by the user prioritizes

SLAM computation over speech recognition. When there is no

determined context in the beginning half of the timeline, the

weights are determined by the event-driven design as shown

in Figure 5a. For instance, with a slight movement or upon

a speech input, the weight of SLAM or speech recognition

change accordingly. On the other hand, when the robot moves,

the weight for speech recognition is set to small values because

of the context-aware design and the user configurations that

do not allow speech recognition while the robot moves.

Additionally, Figure 5b shows the normalized weights with

the RT scheduler. As seen, this scheduler has more lag in

responding to changes since the scheduler uses a round-robin

policy with dedicated time slices per task. Figure 5c illustrates

some frames from the timeline. In Section VI-B4, we compare

context-aware RT and CFS schedulers for all the experiments.

2) Per-Task Accuracy Measurements: Throughout the three

experiments, we observe accuracy changes as we changed

scheduling configurations. However, in the baseline implemen-

tation with no context-aware task handling, where all tasks

must run, accuracy drops in exchange for increased perfor-

mance if the underlying computation modules are designed

to sacrifice accuracy for real-time performance (e.g., SLAM

dropping frames when computation takes longer than frame

time). Thus, with context-aware scheduling, the resulting per-

task accuracy is slightly higher.

3) Per-Task Total Execution Time: Our results show that the

CFS CA parameter adjustments had the highest level of impact

259

���� ����
���� ���� ���� ����

�
���
���
���
���

�	

�	

��
�

��
��� �	

�	

��
�

��
��� �	

�	

��
�

��
���

��� ��� ���

��
��
��

��
�	

��
	�
�

��
��
��
�	
��
��
�
��

 �
!

������ ������ ���������
���	�"

Fig. 6: Speedup for total execution time with baseline, CFS context-
aware (CFS CA), and RT contex-aware (RT CA).

on per-task performance. For instance, speech recognition and

sign detection tasks take a heavy performance penalty in exp1
when the system prioritized the SLAM module. Therefore, the

configuration of the controller when running under the CFS

CA is very important and must be carefully tuned. Generally

speaking, the RT CA keeps a good balance between fair

scheduling and using sensor events to prioritize the relevant

modules at the right time. This is mainly because of the

technical restrictions with this scheduling policy, effectively

making the RT CA policy an incremental improvement over

the baseline CFS policy.

4) Overall Execution Time: Figure 6 shows the speedup

of different scheduler configurations for the total execution

time of three experiments over the baseline scheduler, Linux

CFS scheduler. As discussed in Section IV-C, our context-

aware technique is implemented with two approaches, CFS

and RT. As seen in Figure 6, with longer run-time, our context-

aware techniques achieve up to 42% speedup compared to the

baseline, a significant speedup by only changing schedulers.

As the run-time reduces, the context-aware configuration loses

its impact and becomes less effective. Empirically, we found

that higher run-time – and therefore increased volumes of

sensor data – leads to higher speed-ups, compared to the

baseline. Our experiments show this up to three minutes, but

our experiments show a similar trend with run times beyond

three minutes. This is because a context-aware setting becomes

more effective when there is a larger number of tasks within

a longer execution time.

Figure 7 illustrates allotted CPU shares in percentage during

the execution of exp1, the speedup of which is shown in

Figure 6. This shows the underlying share per task, which

is directly related to the scheduling weights determined by

the controller. The controller is using the context-aware CFS

scheduler. As seen, since SLAM is more frequent and has

more computations, most of the time the CPU is processing

�

���

���

���

���

�

� �� �� �� �� ��� ��� ��� ��� ���

	

�
��

��
��

��
��

�

����	�
����
�

������������	
	�� �	�����
��
	�� ���

Fig. 7: Allotted CPU shares for speech recognition, sign detection,
and SLAM tasks during exp1 using CFS CA.

the SLAM task. However, when a relatively compute-intensive

task requires more CPU (e.g., sign detection), more CPU

shares are allocated to that task depending on the context.

Meanwhile, as seen in the figure, sometimes a task allotted

CPU share is zero, which is because of the context-aware

configuration. As shown in Figure 6, the context-aware con-

figuration allows us to achieve faster execution times.

VII. CONCLUSION

In this paper, we introduced context-aware task handling

for resource-constrained robots to extend their abilities with

limited computation resources. We use a reactive program-

ming paradigm to build a lightweight controller that performs

event-driven task scheduling using supported Linux kernel

schedulers. Our system can dynamically schedule tasks at

the kernel-level by adjusting task scheduling parameters. We

use containerized modules using Docker, which allows users

to create and collaborate independently on several platforms.

Finally, our experiments with Raspberry Pi 4 show significant

speedups while performing multiple tasks such as SLAM, sign

detection, and speech recognition.

REFERENCES

[1] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Transactions on automation
science and engineering, vol. 12, no. 2, pp. 398–409, 2015.

[2] B. Asgari, R. Hadidi, J. Dierberger, C. Steinichen, A. Marfatia, and
H. Kim, “Copernicus: Characterizing the performance implications of
compression formats used in sparse workloads,” in 2021 IEEE Interna-
tional Symposium on Workload Characterization (IISWC). IEEE, 2021,
pp. 1–12.

[3] L. Wang, M. Liu, and M. Q.-H. Meng, “A hierarchical auction-based
mechanism for real-time resource allocation in cloud robotic systems,”
IEEE transactions on cybernetics, vol. 47, no. 2, pp. 473–484, 2016.

[4] B. Asgari, R. Hadidi, N. S. Ghaleshahi, and H. Kim, “Pisces: power-
aware implementation of slam by customizing efficient sparse algebra,”
in 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE,
2020, pp. 1–6.

[5] R. Hadidi, B. Asgari, S. Jijina, A. Amyette, N. Shoghi, and H. Kim,
“Quantifying the design-space tradeoffs in autonomous drones,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
661–673.

[6] B. Asgari, R. Hadidi, and H. Kim, “Ascella: Accelerating sparse
computation by enabling stream accesses to memory,” in 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2020, pp. 318–321.

[7] B. Asgari, R. Hadidi, H. Kim, and S. Yalamanchili, “Lodestar: Creating
locally-dense cnns for efficient inference on systolic arrays,” in Proceed-
ings of the 56th Annual Design Automation Conference 2019, 2019, pp.
1–2.

[8] iRobot Inc., “irobot create 2 programmable robot,” https://www.irobot.
com/%20about-irobot/stem/create-2, 2019, [Online; accessed 22/02/20].

[9] Raspberry PI Foundation, “Raspberry pi 4b,” https://www.raspberrypi.
org, 2019, [Online; accessed 22/09/20].

[10] C. Boettiger, “An introduction to docker for reproducible research,” ACM
SIGOPS Operating Systems Review, vol. 49, pp. 71–79, 2015.

[11] K. Ramamritham and J. A. Stankovic, “Scheduling algorithms and
operating systems support for real-time systems,” Proceedings of the
IEEE, vol. 82, no. 1, pp. 55–67, 1994.

[12] A. S. Tanenbaum and H. Bos, Modern operating systems. Pearson,
2015.

[13] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, no. 3.2. Kobe, Japan,
2009, p. 5.

260

[14] D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg, “Response-
time analysis of ros 2 processing chains under reservation-based schedul-
ing,” in Euromicro Conference on Real-Time Systems (ECRTS), 2019.

[15] J. Kay and A. R. Tsouroukdissian, “Real-time control in ros and ros
2.0,” ROSCon15, 2015.

[16] L. Torvalds, “kernel/git/torvalds/linux.git,” https : / / git . kernel .
org / pub / scm / linux / kernel / git / torvalds / linux . git / commit / ?id =
70e6e1b971e46f5c1c2d72217ba62401a2edc22b, 2019.

[17] R. Project, “Reactivex: An api for asynchronous programming with ob-
servable streams,” http://reactivex.io/, 2019, [Online; accessed 22/02/20].

[18] Linux Programmer’s Manual, “SCHED,” http://man7.org/linux/man-
pages/man7/sched.7.html, 2019, [Online; accessed 22/02/20].

[19] kernel development community, “Cfs bandwidth control,” https://www.
kernel.org/doc/html/latest/scheduler/sched-bwc.html, 2020.

[20] Minoru 3D, “Minoru 3d webcam,” http://minoru3d.com/, 2017.
[21] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM

system for monocular, stereo and RGB-D cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[22] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The euroc micro aerial vehicle datasets,”

The International Journal of Robotics Research, vol. 35, no. 10, pp.
1157–1163, 2016.

[23] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
2011.

[24] D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M. Ravishankar,
and A. I. Rudnicky, “Pocketsphinx: A free, real-time continuous speech
recognition system for hand-held devices,” in 2006 IEEE International
Conference on Acoustics Speech and Signal Processing Proceedings,
vol. 1. IEEE, 2006, pp. I–I.

[25] Mozilla, “Github mozilla/deepspeech,” https : / / github. com / mozilla /
DeepSpeech, 2019, [Online; accessed 22/02/20].

[26] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint arXiv:1804.03209, 2018.

[27] iRobot Inc., “irobot create 2 open interface,” https://cdn-shop.adafruit.
com/datasheets/create 2 Open Interface Spec.pdf, 2019, [Online; ac-
cessed 22/02/20].

[28] SLAMTEC, “Rplidar a1,” http://slamtec.com/en/Lidar/A1, 2019.
[29] MeArm, “Mearm: Build-it-yourself robotic arm for raspberry pi,” https:

//mearm.com/, 2019, [Online; accessed 22/02/20].

261

