
Context-Aware Task Handling in
Resource-Constrained Robots

with Virtualization
IEEE Edge’23

July 2023

Ramyad Hadidi*
Rain AI

Nima Shoghi
Georgia Tech

Bahar Asgari*
University of

Maryland

Hyesoon Kim
Georgia Tech

* This work was done when the authors were affiliated with Georgia Tech.

2

Mobile Robots

Mobile robots are used in various scenarios:
• Interacting with a complex

and non-deterministic world
• Executing numerous tasks like

 Sensing,
 planning,
 manipulating,
 and reasoning

LIDAR

Arm

Stereo
Camera
(front)

C
am

er
a

(s
id
e)

Sp
ea

ke
r

Internal

Raspberry Pi

Mic
IMU

Lidar

IMU

Stereo Camera

Robotic Arm

Side Camera

Side Camera

Microphone

Navigation Motors

Speaker

Our Raspberry-Pi-Based Robot

3

The Challenge of Mobile Robots

In a complex world, all intelligent mobile robots are in a
never-ending conflict among:
• Limited computational resources
• Energy storage, and
• Pending tasks requiring resources

Resource-constrained mobile robots have even more
challenges to meet all the real-time deadlines

4

The Challenge of Mobile Robots

In a complex world, all intelligent mobile robots are in a
never-ending conflict among:
• Limited computational resources
• Energy storage, and
• Pending tasks requiring resources

Resource-constrained mobile robots have even more
challenges to meet all the real-time deadlines

Need for solutions that ensure real-time
performance with concurrent task handling

5

Current Solutions and Their Limitations

First group involves adding extra hardware or
 utilizing cloud/fog computation
• Adding extra hardware is infeasible or uneconomical

• The most common approach:
 Dedicate one processor per task! Not scalable
• Adding extra hardware is often infeasible

For instance, in a lightweight drone
• Cloud and fog computations are not always available

and privacy concerns limit their use

6

Current Solutions and Their Limitations

Second group involves Real-Time OS schedulers or
 Robotic OS (ROS)
• Real-time OS schedulers are designed to minimize

latency with preemptive schedulers
• They cannot guarantee hard deadlines
• They are not dynamic because fixed schedulers

• ROS does not offer real-time operations
• ROS2 does not support dynamically changing

priorities in runtime and requires additional Linux
kernel support

OS: Operating System

7

Solution – Example
Detecting contexts to improve real timeliness of critical
tasks by dynamically reducing number of tasks in runtime

8

Solution – Example
Detecting contexts to improve real timeliness of critical
tasks by dynamically reducing number of tasks in runtime

Simple Example of a speech enabled vacuum robot

9

Solution – Example
Detecting contexts to improve real timeliness of critical
tasks by dynamically reducing number of tasks in runtime

0

0.2

0.4

0.6

0.8

1

Ta
sk

 P
rio

rit
y

Time (Total 2 mins)

Visual SLAM Speech Recongition

Timeline No movement Movement

Event Driven Context Aware

Simple Example of a speech enabled vacuum robot

10

Solution – Example
Detecting contexts to improve real timeliness of critical
tasks by dynamically reducing number of tasks in runtime

0

0.2

0.4

0.6

0.8

1

Ta
sk

 P
rio

rit
y

Time (Total 2 mins)

Visual SLAM Speech Recongition

Timeline No movement Movement

Event Driven Context Aware

Simple Example of a speech enabled vacuum robot

11

Solution

Context-Aware Task Handling

 OS-Level Dynamic
 Time Sharing

 Event-Driven
 Scheduling

 Virtualized
 Execution

to dynamically simplify
world for easier planning

to meet hard real-time
deadlines

to mindfully use limited
resources

to implement a lightweight and
programmable reactive paradigm
+ no Linux kernel modifications

12

System Overview

Re
ac

tiv
e

(in
pu

ts
)

Linux Kernel Scheduler

Docker 1
(IMU)

Dockers (modules)

Inputs & Sensors

IMU Camera Mic
Controller

User Config

Docker 2
(SLAM)

Docker n
(Speech)

Docker 3
(Arm)

Context-Aware

Priority Priority Priority Priority

Publish & Subscribe Communication

Reactive (Dockers)

Multiple components at play:
 Task graphs | Docker/task | Context-Aware controller

13

Task Graphs

Sub-Task
keyword spotting
(simple computation)

Capability Constraint
4-core, 700 MB mem

250 ms slice

Sub-Task
record

microphone

Pre-Condition
microphone

Capability Constraint
1-core, 20 MB,
10 ms slice

Capability Constraint
1-core, 100 MB mem

30 ms slice

Sub-Task
speech recognition

(DNN-based)

Speech Recognition Task

Sensors &
Outputs

Pre-Condition
speaker

Chatbot Task

Sub-Task
answer generation

(database based)
Sub-Task

text to speech

Capability Constraint
(removed for brevity)

…
…

14

Task Graphs with Reactive Paradigm

An example with IMU sensor:

Sub-Task
keyword spotting
(simple computation)

Capability Constraint
4-core, 700 MB mem

250 ms slice

Sub-Task
record

microphone
Pre-Condition
microphone

Capability Constraint
1-core, 20 MB,
10 ms slice

Capability Constraint
1-core, 100 MB mem

30 ms slice

Sub-Task
speech recognition

(DNN-based)

Speech Recognition Task

Sensors &
Outputs

Contex-Aware
not moving

15

Results

1.35 1.42
1.12 1.04 0.98 1.01

0
0.4
0.8
1.2
1.6

CFS
CFS

CA
RT CA CFS

CFS
CA

RT CA CFS
CFS

CA
RT CA

Exp1 Exp2 Exp3

Sp
ee

du
p

fo
r T

ot
al

Ex
ec

ut
io

n
Ti

m
e

(s
)

3 min. 1 min. 15 sec.Duration:

Legend -- CFS: Linux Scheduler
 -- CFS CA: Linux Scheduler + Context Aware
 -- RT CA: Real-Time Scheduler + Context Aware

Note -- Non-Context-Aware settings miss deadlines!

16

17

Context-Aware Task Handling in
Resource-Constrained Robots with Virtualization

Ramyad Hadidi§
Rain AI

ramyad@rain.ai

Nima Shoghi Ghaleshahi
Georgia Tech

nimash@gatech.edu

Bahar Asgari§
University of Maryland

bahar@umd.edu

Hyesoon Kim
Georgia Tech

hyesoon.kim@gatech.edu

Abstract—Intelligent mobile robots are critical in several sce-
narios. However, as their computational resources are limited,
mobile robots struggle to handle several tasks concurrently
while guaranteeing real timeliness. To address this challenge
and improve the real-timeliness of critical tasks under resource
constraints, we propose a fast context-aware task handling tech-
nique. To effectively handle tasks in real-time, our proposed
context-aware technique comprises three main ingredients: (i)
a dynamic time-sharing mechanism, coupled with (ii) an event-
driven task scheduling using reactive programming paradigm
to mindfully use the limited resources; and, (iii) a lightweight
virtualized execution to easily integrate functionalities and their
dependencies. We showcase our technique on a Raspberry-
Pi-based robot with a variety of tasks such as Simultaneous
localization and mapping (SLAM), sign detection, and speech
recognition with a 42% speedup in total execution time compared
to the common Linux scheduler.

Index Terms—Edge AI, Software, Mobile Robots, Middleware
and Programming Environments, Reactive and Sensor-Based
Planning,

I. INTRODUCTION & MOTIVATION

Unlike conventional industrial or commercialized robots
that perform a set of pre-programmed and routine tasks,
intelligent mobile robots manipulate their environment using
their perception and physical resources to achieve a myriad
of goals. Such robots must be capable of dynamically switch-
ing between navigation, planning, reasoning, recognition, and
sensing their environment. Intelligent robots need to interact
with a dynamic, complex, and non-deterministic world. These
robots must execute numerous tasks such as controlling their
physical resources (e.g., arms), understanding data derived
from sensors, or executing perception and planning.

Intelligent robots are always in a never-ending conflict
between available computation resources, their energy storage,
and the tasks at hand. This conflict is particularly emphasized
in resource-constrained robots because even the concurrent
execution of a few rudimentary tasks is extremely demanding
with only a few processing cores. For example, a Rasp-
berry Pi with only four cores could be fully utilized by the
operation system (OS), processing the data from a single
sensor, and simple navigation and control algorithms. Adding
more sensors and tasks only causes the robot to miss real-
time deadlines. Thus, ensuring efficient handling of critical

This work was supported in part by the NSF grant number 2103951.
§This work was done when the authors were affiliated with Georgia Tech.

tasks and meeting critical deadlines is the key challenge for
resource-constrained robots.

To extend the capabilities of resource-constrained robots and
meet real-time demands, the common practices are adding
extra hardware or utilizing cloud/fog computation [1]–[7].
However, in several scenarios, adding new hardware is either
infeasible or uneconomical. For example, adding extra pro-
cessing units to a lightweight drone requires heavier batteries,
which in turn demands stronger motors. Further, cloud and fog
are not always available. Additionally, privacy concerns limit
the suitability of cloud-based computation.

To enable intelligent mobile robots to efficiently utilize
limited resources, we propose a context-aware task handling
technique that simplifies the world and planning tasks by
dynamically reducing the number of tasks in a certain context
to only the critical ones. For example, limited human-robot
interaction is expected while the robot is performing an already
assigned task. This technique enables resource-constrained
robots to efficiently perform manifold functionalities while
meeting their real-time constraints.

To be effective in handling tasks using our context-aware
technique, we propose using a virtualized execution that (i)
integrates several tasks while providing dynamic, low-cost, and
kernel-level control over the scheduling policy; (ii) enables
easier context-aware implementation by providing manageable
control over tasks; and (iii) provides a uniform and practical
environment for building new robots in the community.

For experiments, we use a custom-built Raspberry-Pi-based
robot using an iRobot Roomba [8] equipped with one Rasp-
berry Pi 4 (RPi4) [9] as the only processing unit. Our
iRobot, shown in Figure 1, has several sensors (i.e., LIDAR,
inertial measurement unit (IMU), cameras, and microphone),
and control devices (i.e., motors for navigation, robotic arm,
and speakers). For software, we use Docker [10], a popular
virtualization tool, and implement our context-aware technique
to collect and process sensor data, simultaneous localization
and mapping (SLAM), voice recognition, and sign recognition.
Our contributions are as follows:

• Context-aware task planning to effectively use the limited
resources and hence extend the number of tasks that a
robot can handle.

• OS-level dynamic time-sharing to implement the context-
aware scheduling in real-time.

Please check the paper for
more details on
• Scheduling policies,
• Integration with Linux,
• Docker implementation,
• Experiments details, and
• Planning algorithm

18Backup Slides

19

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

Al
lo

tte
d

CP
U

(%
)

Time (seconds)
Thousands

Speech Recognition Sign Detection SLAM

20

Ti
m
el
in
e

Almost no movement – event driven Movement – context aware

Event Driven Context Aware

(a)
CFS
CA

(b)
RT
CA

(c)

0

0.2

0.4

0.6

0.8

1

W
ei
gh
ts

Time (Total 2 mins)

0

0.2

0.4

0.6

0.8

1

W
ei
gh
ts

Visual Slam Speech Recongition

Ti
m
el
in
e

Almost no movement – event driven Movement – context aware

Event Driven Context Aware

(a)
CFS
CA

(b)
RT
CA

(c)

0

0.2

0.4

0.6

0.8

1

W
ei
gh
ts

Time (Total 2 mins)

0

0.2

0.4

0.6

0.8

1

W
ei
gh
ts

Visual Slam Speech Recongition

Sc
he

du
lin

g
W

ei
gh

ts

21

