
Reducing Inference Latency with Concurrent
Architectures for Image Recognition at Edge

Ramyad Hadidi§*

Rain AI
ramyad@rain.ai

Jiashen Cao§

Georgia Tech
jiashenc@gatech.edu

Michael S. Ryoo
Stony Brook University and Google

mryoo@cs.stonybrook.edu

Hyesoon Kim
Georgia Tech

hyesoon.kim@gatech.edu

Abstract—Satisfying the high computation demand of modern
deep learning architectures is challenging for achieving low infer-
ence latency. The current approaches in decreasing latency only
increase parallelism within a layer. This is because architectures
typically capture a single-chain dependency pattern that prevents
efficient distribution with a higher concurrency (i.e., simultaneous
execution of one inference among devices). Such single-chain
dependencies are so widespread that even implicitly biases recent
neural architecture search (NAS) studies. In this visionary paper,
we draw attention to an entirely new space of NAS that re-
laxes the single-chain dependency to provide higher concurrency
and distribution opportunities. To quantitatively compare these
architectures, we propose a score that encapsulates crucial
metrics such as communication, concurrency, and load balancing.
Additionally, we propose a new generator and transformation
block that consistently deliver superior architectures compared to
current state-of-the-art methods. Finally, our preliminary results
show that these new architectures reduce the inference latency
and deserve more attention.

Index Terms—Edge AI, Neural Architecture Search, Dis-
tributed and Collaborative Edge Computing, IoT, Collaborative
Edge & Robotics

I. INTRODUCTION & MOTIVATION

Increasingly deeper and wider convolution/deep neural net-
works (CNN/DNN) [1]–[3] with higher computation demands
are continuously attaining higher accuracies. Nevertheless,
the high computation and memory demands of these DNNs
hinder achieving low inference latency [4]. Although current
platforms exploit parallelism, we discover that, since most
architectures capture a single-chain dependency pattern [5]–
[7], shown in Figures 1a & b, we cannot efficiently extend con-
currency and distribution beyond current explicit parallelism
exposed within intra-layer computations (i.e., matrix-matrix
multiplications) to reduce the latency of an inference. In other
words, distribution and concurrency, if any, are implemented
at data level [8], which only increases the throughput.

The status quo approaches in reducing the inference latency
are always applied after an architecture is defined (e.g.,
reducing parameters with weight pruning [9], [10] or reducing
computation with quantization or compression [11]–[13]).
Additionally, for extremely large architectures, limited model

This work was partially supported by the NSF grant number 2103951
and Institute of Information and Communications Technology Planning and
Evaluation grant funded by the Korea government (No. 2021-0-00766).

§Equal contribution
*This work was done when the author was affiliated with Georgia Tech.

(a) ResNet50 (b) Prior Work (c) This work
(with DP generator)

Single-Chain Dependency Concurrent Easily Distributed
Not Concurrent

Hard To
Distribute

Fig. 1: Sampled Architectures Overview – (a) & (b) Limited
concurrency and distribution due to single-chain dependency.
(c) Improved concurrent architecture.

parallelism is applied on final layers (i.e., large fully-connected
layers that do not fit in the memory of edge devices [14]–[16]).
However, since model-parallelism methods do not change
the architecture, distributing all layers with such methods
adds several synchronization/merging points, incurring high
communication overheads (Figure 1a & b). We discover that
the single-chain inter-layer dependency pattern, common in
all the well-known architectures and even in state-of-the-art
neural architecture search (NAS) studies [17], prevents the
efficient model distribution for reducing inference latency.

This visionary paper addresses the single-chain data de-
pendency in current architecture designs and endeavors to
inspire discussion for new concurrent architectures for at-
edge distribution. To do so, first, we analyze architectures
generated by recent unbiased NAS studies [17] and discover
that scaling/staging blocks implicitly enforce dependencies.
Then, we generate new architectures with prior and our new
distance-based network generators using our new probabilistic
scaling block. Then, for quantitatively comparing generated ar-
chitectures, we propose a concurrency score that encapsulates
important metrics such as communication, load balancing,
and overlapped computations, by reformulating the problem
as a hypergraph partitioning problem [18], [19]. Based on
the scores and experiments, our generated architectures have
higher concurrency and are more efficient for distribution

245

2023 IEEE International Conference on Edge Computing and Communications (EDGE)

2767-9918/23/$31.00 ©2023 IEEE
DOI 10.1109/EDGE60047.2023.00046

Ramyad
Author’s Copy

Lower Score =
More Concurrent

Architectures
Prior Work:

Ineffective Distribution
& No Concurrency
For an Inference

This Work:
Enabling Distribution

& Concurrency
For an Inference

Th
is

 w
or

k

Fig. 2: Accuracy vs. Concurrency Score – Randomly sam-
pled concurrent architectures generated with our NAS con-
sistently achieve competitive accuracies with a higher con-
currency and distribution opportunities during an inference
(Flower-102, §III).

than current architectures, an example of which is shown
in Figure 1c. Additionally, as shown in Figure 2, they pro-
vide competitive accuracy while delivering high concurrency,
directly proportional to inference latency (Figure 8). Our
experiment results (on over 1000 samples) show that our
architectures achieve 6–7x faster inference time. As an added
benefit, the current methods for reducing the inference latency
can be applied on top of our generated architectures. The
following is our contribution:

Addressing Single-Chain Data Dependencies: Our con-
current architectures created by network generators (es-
pecially the new distance-based generator) break current
biased designs by delivering high concurrency.
Proposing Representative Concurrency Score: Our prob-
lem formulation based on hypergraph theory encapsulates
critical metrics to quantitatively compare all architectures
for efficient distribution and concurrency.

II. RELATED WORK

Computation & Parameter Reduction: Reducing compu-
tation and parameters to reduce inference latency is an active
research area. These techniques are applied after a model’s
architecture is fixed. One common approach is to remove
the weak connections with weight pruning [9], [20]–[23], in
which the close-to-zero weights are pruned away. It is also
been shown that moderate pruning with iterative retraining
enables superior accuracy [9]. Quantization and low-precision
inference [11], [24]–[27] change the representation of num-
bers for faster calculations. Several methods also have been
proposed for binarizing the weights [28]–[30]. The concurrent
architectures can also benefit from these approaches, making
them complementary to further reduce inference latency.
Concurrency & Distribution: With increasingly larger archi-
tectures and widespread usage of deep learning, distribution
have gained attention [31]–[34]. Most of the techniques either
exploit data or model parallelism [5], [31]. Data parallelism
only increases the throughput of the system and does not affect
the latency. Model parallelism divides the work of a single
inference. However, model parallelism keeps the connections

intact. Thus, applying model parallelism on intra-layer compu-
tations results in a huge communication overhead for sharing
the partial results after each layer due to existing single-
chain dependency. SplitNet [35] focuses on improving the
concurrency opportunity within an architecture by explicitly
enforcing dataset semantics in the distribution of only the final
layers. Each task needs to be handcrafted individually for each
dataset by examining the semantics in the dataset. In this paper,
we propose concurrent architectures that is generated by NAS
by considering all important factors for distribution, which has
not been explored by prior work.
Neural Architecture Search: With the growing interests in
automating the search space for architectures, several stud-
ies [2], [3], [17], [36]–[39] have proposed new optimization
methods. Most of these studies [2], [36] utilize an LSTM
controller for generating the architecture. However, as pointed
out in [17], the search space in these studies is determined by
the implicit assumption in network generators and sometimes
explicit staging (i.e., downsampling spatially while upsampling
channels). Although Xie et al. [17] aimed to remove all the
implicit wiring biases from the network generator by using
classical random graph generator algorithms, they introduced a
scaling/staging bias in the final architecture to deal with a large
amount of computation. Such stagings create a merging point
after a stage where all the features are collected and downsam-
pled before the next stage. Hence, the generated architecture
still carries the single-chain of dependency which limits the
further concurrency. In contrast, our proposed architectures
do not enforce such a dependency by removing this bias.
Moreover, compared to prior work, our target is to reduce
inference latency by increasing concurrency, which has not
been explored before.

III. CONCURRENT ARCHITECTURES

Here, we propose concurrent architectures that break the
single-chain dependency pattern for enabling the concurrent
execution of an inference. To improve distribution and concur-
rency, we aim to search for an architecture that has minimal
communication overhead and is load balanced when it is
distributed. To do so, the following provides the general
problem formulation, while §III-A and §III-B describe our
implementation details. In §III-C, we extend the representation
to quantitatively study distribution and concurrency opportu-
nities, derived by reformulating the problem as a hypergraph
partitioning problem.
Overview: The current design of neural architectures is opti-
mized for prediction accuracy and has an implicit bias towards
the single-chain approach [17], [36], as we discussed in §I.
This bias limits concurrency and distribution for reducing
inference latency. In other words, only the computation within
a layer is performed in parallel and not the computation
within a model. To tackle this challenge, we aim to consider
concurrency and distribution during the design stage and test
if such architectures provide higher concurrency with good
accuracy. To do so, first, we use network generators to create a

246

random graph structure, which represents a potential architec-
ture. Among all generated architectures, we sample (without
any optimized search) and evaluate generated architectures
with our proposed concurrency score. Then, we transform the
graph to a DNN and perform experiments. Our final results
show a promising direction worth exploring.
DAG Representation: A neural architecture, N , can be
represented as a directed acyclic graph (DAG) because the
computation flow always goes in one direction without loop-
ing. We define a DAG as G = (V,E) where V and E are
sets of vertices and edges, respectively. We define a network
generator, f , as a function that constructs random DAG. f
creates the edge set, E, and defines the source and sink
vertices for each edge, regardless of the type of the vertices.
Although network generators could be deterministic (e.g., a
generator implemented with NAS approach), we are interested
in stochastic network generators. The reasons are two-fold.
First, the stochastic generator provides a larger search space
than the deterministic generator, so it is more likely to remove
any bias. Second, since, unlike prior work, we don not use
scaling/staging to glue different parts of our NAS generated
network [17] (shown in Figure 1b), stochastic generators
provide more options for a potential solution. Note that the
generated DAG only represents the dataflow and does not
include the weights, which are learned in subsequent steps.
§III-A provides more details about our network generators and
how we utilize them to create a DAG.
DAG to DNN: Once we have found a promising DAG
representation after the concurrency score study, we transform
the DAG into an actual DNN. Vertices in DAG are components
(e.g., layers or sub-networks) and edges are connections.
Within the process of transformation, we convert the nodes
in DAG to a block of layers and connect blocks with its
corresponding edge in DAG. Each vertex, Vi, has several
properties such as the type of the layer and its properties
(e.g., depth, width, activation size, etc). In this paper, we
use a uniform computation in vertices: ReLU, 3x3 separable
convolution [40], and batch normalization [41].

A. Network Generators

We use three classical random graph generators as baselines.
Additionally, after discovering that state-of-the-art generators
do not generate a concurrent architecture, we propose a new
graph generator with distance-based heuristics. Below, we
describe the generators identified by how their stochastic
nature influences the graph. Note that although the first three
generators are based on [17], to generate concurrent architec-
tures, we have removed the introduced staging blocks, which
enforces the single-chain dependency in prior work. Thus, all
the studied architectures in this work are novel and have never
been studied before.

Once we obtain an undirected random graph from the
generator, we convert the undirected graph to DAG by using
the depth-first search algorithm. The vertices with smaller
vertex ID is traversed earlier than vertices with larger ID. As
the final step, we add an input vertex to all vertices without

(a) Erdős-Rényi (b) Barabási-Albert

(c) Watts-Strogatz (d) Exponential Distance Based

Fig. 3: Network Generators – Four examples of different
random graph generators. Note that only (d) produces a good
concurrent balanced graph.

predecessors and an output vertex to all vertices without
successors. This ensures that we obtain a DAG with a single
source and sink.
(1) Independent Probability: In this group, the probability
of adding an edge is independent of other properties. Similar
to the Erdős and Rényi model (ER) [42], in which an edge
exists with a probability of P . Generators with independent
probability completely ignore the graph structure and create
a connected graph (Figure 3a) that is hard to efficiently
distribute.
(2) Degree Probability: In this group, the probability of
adding an edge is defined by the degree of one of its connected
vertices. A vertex with a higher degree has more probability
of accepting a new edge. Figure 3b shows an example of such
a generator. Barabási-Albert model (BA) [43], first adds M
disconnected vertices, then for the total number of vertices
until N , it adds a total of M edges with a linear probability
proportional to the degree of each vertex (i.e., a total of
M(N −M) edges). Generators with degree probability create
a tree-structured graph, in which at least one vertex is strongly
connected to other vertices. Such a graph structure is hard to
distribute since all the vertices are dependent on at least one
vertex, if not more.
(3) Enforced Grouping: In this group, initially, a pre-defined
grouping is performed on disconnected vertices and then edges
are added based on the groups. Small world graphs [44]–[46]
are good examples. In one approach (WS) [45], vertices are
placed in a ring and each one is connected to K/2 neighbors on
both sides. Then, in a clockwise loop on vertices, an existing
edge between its ith neighbor is rewired with a uniform
probability of P for K/2 times. As shown in Figure 3c, a graph
with the WS algorithm tends to form a single-chain structure
if P is small. With a larger P , the structure becomes similar
to ER.
(4) Distance Probability: In distance probability (DP), ini-
tially, a pre-defined grouping is performed on disconnected
vertices, then a distance probability function defines the ex-
istence of an edge. We first arrange the vertices in a ring.
Then, the probability of adding an edge between two vertices
is dependent on their distance. In other words, closer vertices
have a higher probability of getting edges.

247

Conv Block

Direct Output to Other
Blocks

Input from
Other Blocks

Learnable
Weighted

Sum

Sigmoid Sigmoid

MaxPooling

Conv

MaxPooling

Input

Scaled Output

(a) Basic Building Block. (b) Scaling Building Block.

Fig. 4: Building Blocks – Building blocks used for conversion
from DAG to DNN.

− Distance Metrics: We define distance d as the smallest
number of nodes plus one between two nodes in a ring. The
maximum distance can be half of the total number of nodes,
which is N/2. We use the distance to re-scale the passed in
probability P presented in WS. We use the exponential re-
scaling function:

Pnew = αP βd, (1)

in which α and β are constants. The probability quickly
decreases as the distance increases. This mechanism naturally
creates multiple locally strongly connected graphs, Figure 3d,
which can be distributed. However, we still need to examine
the distribution and concurrency opportunities, which are
presented in §III-C.

B. Transformations

Transformations are operations, the main objective of which
is to create a reasonable architecture, that happens after the
construction of the DAG. We first introduce the building
blocks, which include a scaling building block that, contrary
to previous work, does not enforce a single-chain dependency.
Building Block: During the process of transforming a DAG
to DNN, vertices are interpreted as basic building blocks, as
shown in Figure 4. Inside a basic building block, Sigmoid acti-
vations are applied on inputs, then, the activations are summed
with a learnable weighted sum. The Sigmoid function is used
to avoid weighted sum overflow. As described before, the
conv block consists of a ReLU, 3×3 separable convolution,
and batch normalization.
Redefining Staging: Staging is deemed to be necessary for
all NAS generated architectures to reduce the computation and
facilitate learning. For staging, after a few layers, usually,
the common method is to gather and merge outputs from
all transformation vertices, conduct downsampling, and chan-
nel upsampling. However, such staging points create a rigid
architecture with single-chain dependencies that are hard to
distribute and execute concurrently (e.g., [17]). To address
the single-chain bottleneck problem caused by staging, the
first solution is implementing a uniform channel size for the
entire architecture. In other words, all conv blocks share the
same filter size. Thus, there would be no need to merge and
synchronize at a point during an inference. However, as shown
in Table I, the uniform channel size approach works well on
a small image dataset (e.g., Cifar-10), but it fails to achieve

good accuracy on a dataset with larger image dimension (e.g.,
Flower-102).

In this paper, we propose individual staging after any conv
block. Because of that, inputs to a conv block could have
different dimensions. To tackle this problem, we dynamically
add a new scaling block in the process of construction. The
scaling block consists of a number of maxpooling layers.
Maxpooling layers downsamples the dimensions to match
with the smallest dimension in the input. We also use 1×1
convolution layers to upsample the channel size to match the
highest channel size in the inputs in these scaling blocks.
Therefore, we avoid bottlenecks in generated architecture.

We adopted two design choices for the staging mechanism.
In the first design, greedy-based staging, we start with greedy-
based staging. Within the construction process, we set an
upper limit for channel size. As long as channel sizes have
not reached the upper bound, we conduct staging (i.e., down-
sample the input & upsample the channel). However, this
design raises an issue that intermediate outputs are quickly
squeezed through the maxpooling layer, which discards impor-
tant features. This approach hurts the accuracy to some extent.
In the second design, probabilistic-based staging, we use a
probabilistic method in staging. In this design, although the
channel size may have not reached the limit, staging is done
with a fixed probability of 0.5 to avoid discarding features
too quickly. As shown in Tables II and III, the probabilistic
approach achieves a better accuracy rate than the greedy-based
approach. In addition, Table III shows that probabilistic staging
supports higher accuracy with less parameter size because
(i) probabilistic staging gracefully discards features, so the
architecture learns better; and (ii) the aggressive greedy-based
staging creates more size mismatch, so it requires more scaling
blocks.

C. Concurrency & Distribution

Our goal in this paper is to inspire concurrent architecture
designs to improve inference latency performance. As a result,
besides common accuracy considerations, we need to study
the concurrency and distribution opportunities of a candidate
architecture. To help the community to extend our study,
instead of focusing and showcasing on a single architecture,
we are interested in finding a customized concurrency score
(CS) for a given architecture, N , that is easily calculated. In
this way, we can study various architectures and future works
that can further improve this work. CS shows how optimal the
concurrent and distributed task assignment for an architecture

TABLE I: Accuracy of Uniform Channels – The mean
accuracy comparison between sampled group architectures
with uniform channel vs. handcrafted without any advanced
optimizations. (baselines Cifar-10 and Flower-102 are vanilla
CifarNet and ResNet-50, respectively).

Dataset Baseline DNNs with Uniform
Channels

Cifar-10 32×32 80.70 81.13
Flower-102 224×224 87.80 74.73 (Fails to Scale!)

248

TABLE II: Average Accuracy – Comparison of randomly
sampled group of generated architectures with different staging
choices (trained on Flower-102).

Staging/Samples A B C Overall Mean
Greedy 82.30 81.32 82.42 82.01
Probabilistic 82.42 86.69 84.62 84.58

1

11

2

2

3

4

5

6

(a) (b)

n = 3
<latexit sha1_base64="1hL/+kzhwtt63NL+KL9k2t781Xc=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqiS2+FgIRTcuK9oHtKFMppN26GQSZiZCCf0ENy4UcesXufNvnKRB1HrgwuGce7n3Hi/iTGnb/rQKS8srq2vF9dLG5tb2Tnl3r63CWBLaIiEPZdfDinImaEszzWk3khQHHqcdb3Kd+p0HKhULxb2eRtQN8EgwnxGsjXQnLmuDcsWu2hnQInFyUoEczUH5oz8MSRxQoQnHSvUcO9JugqVmhNNZqR8rGmEywSPaM1TggCo3yU6doSOjDJEfSlNCo0z9OZHgQKlp4JnOAOux+uul4n9eL9b+uZswEcWaCjJf5Mcc6RClf6Mhk5RoPjUEE8nMrYiMscREm3RKWQgXKU6/X14k7ZOqU6vWb+uVxlUeRxEO4BCOwYEzaMANNKEFBEbwCM/wYnHryXq13uatBSuf2YdfsN6/AOTdja4=</latexit>

(c)

⌘ =
6
9
3

= 2
<latexit sha1_base64="0cnWmPG2KQYDE/cf3lgA8uLhavE=">AAACCXicbZDLSsNAFIYn9VbrLerSzWARXJX0QrULoejGZQV7gSaUyXTSDp1MwsxEKCFbN76KGxeKuPUN3Pk2TtIgav1h4OM/53Dm/G7IqFSW9WkUVlbX1jeKm6Wt7Z3dPXP/oCeDSGDSxQELxMBFkjDKSVdRxcggFAT5LiN9d3aV1vt3REga8Fs1D4njowmnHsVIaWtkQpsoBC+g7QmE42YSL6CVxPUk0X5tZJatipUJLkM1hzLI1RmZH/Y4wJFPuMIMSTmsWqFyYiQUxYwkJTuSJER4hiZkqJEjn0gnzi5J4Il2xtALhH5cwcz9OREjX8q57+pOH6mp/FtLzf9qw0h5505MeRgpwvFikRcxqAKYxgLHVBCs2FwDwoLqv0I8RToKpcMrZSG0UjW/T16GXq1SrVcaN41y+zKPowiOwDE4BVVwBtrgGnRAF2BwDx7BM3gxHown49V4W7QWjHzmEPyS8f4F7GCZVw==</latexit>

⌘ =
5
15
3

= 1
<latexit sha1_base64="ku24ey4+nKtWYBS09pT9H8MqxTQ=">AAACCnicbZBNS8MwHMZTX+d8q3r0Eh2Cp9G6+XYQhl48TnAvsJaRZukWlqYlSYVRevbiV/HiQRGvfgJvfhvTrog6Hwj8eJ5/SP6PFzEqlWV9GnPzC4tLy6WV8ura+samubXdlmEsMGnhkIWi6yFJGOWkpahipBsJggKPkY43vsryzh0Rkob8Vk0i4gZoyKlPMVLa6pt7DlEIXkDHFwgnx2kyBVtTLU11YPfNilW1csFZsAuogELNvvnhDEIcB4QrzJCUPduKlJsgoShmJC07sSQRwmM0JD2NHAVEukm+SgoPtDOAfij04Qrm7s8bCQqknASengyQGsm/WWb+l/Vi5Z+5CeVRrAjH04f8mEEVwqwXOKCCYMUmGhAWVP8V4hHSXSjdXjkv4TzTyffKs9A+qtq1av2mXmlcFnWUwC7YB4fABqegAa5BE7QABvfgETyDF+PBeDJejbfp6JxR3NkBv2S8fwFctpmM</latexit>

⌘ =
7
15
3

= 1.4
<latexit sha1_base64="sMPwC2Ffut56OUWAiowsF83ZPUU=">AAACDHicbVDLSsNAFJ3UV62vqks3g0VwFRKtVhdC0Y3LCvYBTSiT6aQdOpmEmYlQQj7Ajb/ixoUibv0Ad/6NkzSIWg8MHM45lzv3eBGjUlnWp1FaWFxaXimvVtbWNza3qts7HRnGApM2Dlkoeh6ShFFO2ooqRnqRICjwGOl6k6vM794RIWnIb9U0Im6ARpz6FCOlpUG15hCF4AV0fIFw0kiTGbFP0uQ4TbVhm3WdskwrB5wndkFqoEBrUP1whiGOA8IVZkjKvm1Fyk2QUBQzklacWJII4Qkakb6mHAVEukl+TAoPtDKEfij04wrm6s+JBAVSTgNPJwOkxvKvl4n/ef1Y+WduQnkUK8LxbJEfM6hCmDUDh1QQrNhUE4QF1X+FeIx0G0r3V8lLOM9w+n3yPOkcmfaxWb+p15qXRR1lsAf2wSGwQQM0wTVogTbA4B48gmfwYjwYT8ar8TaLloxiZhf8gvH+BVXzmgQ=</latexit>

Width of Concurrent Computations at Same Depth

(d)

⌘ =
7
7
3

= 3
<latexit sha1_base64="/CSATbvHGtoDlxnIQBAqyFF2lWU=">AAACCXicbZDLSsNAFIYn9VbrLerSzWARXJXEFqsLoejGZQV7gSaUyXTSDk4mYWYilJCtG1/FjQtF3PoG7nwbJ2koav1h4OM/53Dm/F7EqFSW9WWUlpZXVtfK65WNza3tHXN3ryvDWGDSwSELRd9DkjDKSUdRxUg/EgQFHiM97+4qq/fuiZA05LdqGhE3QGNOfYqR0tbQhA5RCF5AxxcIJ800mUM9TbVfH5pVq2blgotgF1AFhdpD89MZhTgOCFeYISkHthUpN0FCUcxIWnFiSSKE79CYDDRyFBDpJvklKTzSzgj6odCPK5i7PycSFEg5DTzdGSA1kX9rmflfbRAr/8xNKI9iRTieLfJjBlUIs1jgiAqCFZtqQFhQ/VeIJ0hHoXR4lTyE80yn85MXoXtSs+u1xk2j2ros4iiDA3AIjoENmqAFrkEbdAAGD+AJvIBX49F4Nt6M91lryShm9sEvGR/f7GCZVw==</latexit>

n = 3
<latexit sha1_base64="1hL/+kzhwtt63NL+KL9k2t781Xc=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqiS2+FgIRTcuK9oHtKFMppN26GQSZiZCCf0ENy4UcesXufNvnKRB1HrgwuGce7n3Hi/iTGnb/rQKS8srq2vF9dLG5tb2Tnl3r63CWBLaIiEPZdfDinImaEszzWk3khQHHqcdb3Kd+p0HKhULxb2eRtQN8EgwnxGsjXQnLmuDcsWu2hnQInFyUoEczUH5oz8MSRxQoQnHSvUcO9JugqVmhNNZqR8rGmEywSPaM1TggCo3yU6doSOjDJEfSlNCo0z9OZHgQKlp4JnOAOux+uul4n9eL9b+uZswEcWaCjJf5Mcc6RClf6Mhk5RoPjUEE8nMrYiMscREm3RKWQgXKU6/X14k7ZOqU6vWb+uVxlUeRxEO4BCOwYEzaMANNKEFBEbwCM/wYnHryXq13uatBSuf2YdfsN6/AOTdja4=</latexit>

n = 3
<latexit sha1_base64="1hL/+kzhwtt63NL+KL9k2t781Xc=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqiS2+FgIRTcuK9oHtKFMppN26GQSZiZCCf0ENy4UcesXufNvnKRB1HrgwuGce7n3Hi/iTGnb/rQKS8srq2vF9dLG5tb2Tnl3r63CWBLaIiEPZdfDinImaEszzWk3khQHHqcdb3Kd+p0HKhULxb2eRtQN8EgwnxGsjXQnLmuDcsWu2hnQInFyUoEczUH5oz8MSRxQoQnHSvUcO9JugqVmhNNZqR8rGmEywSPaM1TggCo3yU6doSOjDJEfSlNCo0z9OZHgQKlp4JnOAOux+uul4n9eL9b+uZswEcWaCjJf5Mcc6RClf6Mhk5RoPjUEE8nMrYiMscREm3RKWQgXKU6/X14k7ZOqU6vWb+uVxlUeRxEO4BCOwYEzaMANNKEFBEbwCM/wYnHryXq13uatBSuf2YdfsN6/AOTdja4=</latexit> n = 3

<latexit sha1_base64="1hL/+kzhwtt63NL+KL9k2t781Xc=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqiS2+FgIRTcuK9oHtKFMppN26GQSZiZCCf0ENy4UcesXufNvnKRB1HrgwuGce7n3Hi/iTGnb/rQKS8srq2vF9dLG5tb2Tnl3r63CWBLaIiEPZdfDinImaEszzWk3khQHHqcdb3Kd+p0HKhULxb2eRtQN8EgwnxGsjXQnLmuDcsWu2hnQInFyUoEczUH5oz8MSRxQoQnHSvUcO9JugqVmhNNZqR8rGmEywSPaM1TggCo3yU6doSOjDJEfSlNCo0z9OZHgQKlp4JnOAOux+uul4n9eL9b+uZswEcWaCjJf5Mcc6RClf6Mhk5RoPjUEE8nMrYiMscREm3RKWQgXKU6/X14k7ZOqU6vWb+uVxlUeRxEO4BCOwYEzaMANNKEFBEbwCM/wYnHryXq13uatBSuf2YdfsN6/AOTdja4=</latexit>

Fig. 5: Overlapped of Computation Metric – Illustration of
η, lower η means higher overlap.

is. A lower PS score represents fewer communications, better
load-balanced tasks, and more distribution opportunities with
more overlapped computation, so the architecture is more
efficient for concurrency.
Metrics in The Score: We can formulate our problem of
allocating tasks on n units as a multi-constraint problem. The
first constraint is that all units should perform the same amount
of work, or be load balanced. Second, the communication
amount, the main bottleneck in distribution, should be at
a minimum. And third, we want to minimize runtime by
increasing overlapped computations among the units. The first
two constraints are addressable by finding a set of hyper-
graph partitions, in which we divide the vertices into equally
weighted sets so that few hyper-edges cross between partitions.
The derivable metric is the amount of variability in loads
(δW) and a total of communication (Λ). The third constraint
is measurable by finding the longest path between the input
and output vertices on the DAG and quantify concurrency (η).
For instance in pipeline parallelism, the longest path is the
entire architecture, as a result the latency is never reduced
(and throughput is increased). Now, we provide the formal
definition of these solutions by first studying the DAG.
Maximizing Overlapped Computations: We measure how
overlapped is the inter-layer computations of an architecture
from its DAG, or η, as a ratio. We measure this by observing
the longest path in the distinct paths between input and
output vertices in the DAG, G, relative to the number of

TABLE III: Average Accuracy/Parameters Ratio – Compari-
son of randomly sampled generated architectures with different
staging choices (trained Flower-102).

Staging/Samples A B C Overall Mean
Greedy 2.31 2.27 2.63 2.40
Probabilistic 3.00 3.28 3.58 3.29

the computation cores, n. Assume {di} is the set of distinct
longest paths in G. We define η as

η =
max{di}

|V|/n
, (2)

in which |V| is the total number of vertices. Figure 5 depicts
an examples of η. A higher η value shows a more limited
opportunity to overlap the computation. Figure 5 also shows
the width of the overlapped computation at the same depth
(i.e., DFS depth with the source of input), which is a good
representation of why some architectures are more efficient
for concurrency.
Hypergraph Representation: Using graph representations in
task assignment for distributed computing is a well-known
problem [47]. Basically, in the generated DAG, vertices of the
graph represent the units of computations, and edges encode
data dependencies. We can indicate the amount of work and/or
data, by associating weights (w) and costs (λ) to vertices
and edges, respectively. However, a DAG representation does
not sufficiently capture the communication overhead, load
balancing factor, and the fact that some edges are basically
sending the same data/features. Therefore, for task assignment,
we use an alternative graph representation, derivable from the
DAG, hypergraph. A hypergraph [18] is a generalization of a
graph, in which an edge can join any number of vertices [48].
The hypergraph representation, common in optimization for
integrated circuits [19], enables us to consider the mentioned
factors.
Formal Definition of Hypergraph: A hypergraph H = (V, E)
is defined as a set of vertices V and a set of hyper-edges E
selected among those vertices. Every hyper-edge ej ∈ E is
a subset of vertices, or ej ⊆ V . The size of a hyper-edge is
equal to the number of vertices.
Hypergraph Partitioning: We assign weights (wi) and costs
(λj) to the vertices (vi ∈ V) and edges (ej ∈ E) of the
hypergraph, respectively. P = {V1, V2, V3, ..., VP } is a P-
way partition of H if (i) ∀Vi, ∅ ̸= Vi ⊂ V , (ii) parts are
pairwise disjoint, and (iii)

⋃P = V . A partition is balanced
if Wp ≤ εWavg for 1 ≤ p ≤ P , where Wavg =

∑
vi∈V wvi/P

denotes the weight of each part, and ε represents the imbalance
ratio, or δW .

In a partition P of H, a hyper-edge that has at least one
vertex in a part is said to connect that part. The number of
connections γj of a hyper-edge ej denotes the number of parts
connected by ej . A hyper-edge is a cut if γj > 1. We define
such hyper-edges as an external hyper-edges EE . The total
communication for P is

Λ =
∑

ej∈EE

λj(γj − 1). (3)

Therefore, our two constraints can be defined as a hypergraph
partitioning problem, in which we divide a hypergrpah into
two or more parts such that the total communication is mini-
mized, while a given balance criterion among the part weights
is maintained. We can solve this NP-hard [19] problem with
multi-paradigm algorithms, such as hMETIS [49] relatively

249

Assigning
Weights and Costs

Partitioning
Hypergraph

n
<latexit sha1_base64="lziy57cWHINJWFI9iAg2wnQeODI=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUSLH7eiF48t2A9oQ9lsp+3azSbsboQS+gu8eFDEqz/Jm//GTRpErQ8GHu/NMDPPjzhT2nE+raXlldW19cJGcXNre2e3tLffUmEsKTZpyEPZ8YlCzgQ2NdMcO5FEEvgc2/7kJvXbDygVC8WdnkboBWQk2JBRoo3UEP1S2ak4GexF4uakDDnq/dJHbxDSOEChKSdKdV0n0l5CpGaU46zYixVGhE7ICLuGChKg8pLs0Jl9bJSBPQylKaHtTP05kZBAqWngm86A6LH666Xif1431sNLL2EiijUKOl80jLmtQzv92h4wiVTzqSGESmZutemYSEK1yaaYhXCV4vz75UXSOq24Z5Vqo1quXedxFOAQjuAEXLiAGtxCHZpAAeERnuHFureerFfrbd66ZOUzB/AL1vsX8CuNKg==</latexit>

"
<latexit sha1_base64="9S9Xxw+f+L1kCG8jIsJ8NMhrUH8=">AAAB8nicbVDLSsNAFJ3UV62vqks3wSK4KokWH7uiG5cV7APSUCbTm3boZCbMTAol9DPcuFDErV/jzr9xkgZR64ELh3Pu5d57gphRpR3n0yqtrK6tb5Q3K1vbO7t71f2DjhKJJNAmggnZC7ACRjm0NdUMerEEHAUMusHkNvO7U5CKCv6gZzH4ER5xGlKCtZG8/hRLiBVlgg+qNafu5LCXiVuQGirQGlQ/+kNBkgi4Jgwr5blOrP0US00Jg3mlnyiIMZngEXiGchyB8tP85Ll9YpShHQppims7V39OpDhSahYFpjPCeqz+epn4n+clOrzyU8rjRAMni0Vhwmwt7Ox/e0glEM1mhmAiqbnVJmMsMdEmpUoewnWGi++Xl0nnrO6e1xv3jVrzpoijjI7QMTpFLrpETXSHWqiNCBLoET2jF0tbT9ar9bZoLVnFzCH6Bev9C9Lpkb8=</latexit>

�
H = (V, E)|P = {V1, V2, V3, ..., VP }

<latexit sha1_base64="hxCgktxbSN4lMa4OlxtEyndv8bo=">AAACSXicbVBJS8NAGJ20LrVuVY9eBotQoYSkLS4HoShCjxVsWmhKnEyn7dDJwsxEKDF/z4s3b/4HLx4U8WSSlrrUBzO8733LzPdsn1EhNe1ZyWSXlldWc2v59Y3Nre3Czq4hvIBj0sIe83jHRoIw6pKWpJKRjs8JcmxG2vb4Msm37wgX1HNv5MQnPQcNXTqgGMlYsgq3pk2HZmg6SI4wYmEjguewNA+NqAznwVV0BO+/w2ZSaoaGpZehYVWSq1qGqqomrGlG6eTIKhQ1VUsBF4k+I0UwQ9MqPJl9DwcOcSVmSIiurvmyFyIuKWYkypuBID7CYzQk3Zi6yCGiF6ZORPAwVvpw4PH4uBKm6s+OEDlCTBw7rkzWEH9zifhfrhvIwWkvpK4fSOLi6UODgEHpwcRW2KecYMkmMUGY0/ivEI8QR1jG5udTE84SHM9XXiRGRdWrau26VqxfzOzIgX1wAEpAByegDhqgCVoAgwfwAt7Au/KovCofyue0NKPMevbAL2SyX7C9r9I=</latexit>

⌘1
<latexit sha1_base64="MXx0uQd4UXJjwhOoxhLHRTvxsvI=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexq8HELevEYwTwgWcLsZJKMmZ1ZZmaFsOQfvHhQxKv/482/cXaziBoLGoqqbrq7gogzbVz30yksLa+srhXXSxubW9s75d29lpaxIrRJJJeqE2BNORO0aZjhtBMpisOA03YwuU799gNVmklxZ6YR9UM8EmzICDZWavWowX2vX664VTcDWiReTiqQo9Evf/QGksQhFYZwrHXXcyPjJ1gZRjidlXqxphEmEzyiXUsFDqn2k+zaGTqyygANpbIlDMrUnxMJDrWehoHtDLEZ679eKv7ndWMzvPATJqLYUEHmi4YxR0ai9HU0YIoSw6eWYKKYvRWRMVaYGBtQKQvhMsXZ98uLpHVS9U6rtdtapX6Vx1GEAziEY/DgHOpwAw1oAoF7eIRneHGk8+S8Om/z1oKTz+zDLzjvX0msjxQ=</latexit>

⇤0
1

<latexit sha1_base64="9sZsqXzZ+eJtTyStL6FTXB0eueo=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovoqiRafOyKbly4qGAf2IYymUzboZNJmJkIJfQv3LhQxK1/486/cZIGUeuBgcM55zL3Hi/iTGnb/rQKC4tLyyvF1dLa+sbmVnl7p6XCWBLaJCEPZcfDinImaFMzzWknkhQHHqdtb3yV+u0HKhULxZ2eRNQN8FCwASNYG+m+d2OiPj7sO/1yxa7aGdA8cXJSgRyNfvmj54ckDqjQhGOluo4daTfBUjPC6bTUixWNMBnjIe0aKnBAlZtkG0/RgVF8NAileUKjTP05keBAqUngmWSA9Uj99VLxP68b68G5mzARxZoKMvtoEHOkQ5Sej3wmKdF8YggmkpldERlhiYk2JZWyEi5SnH6fPE9ax1XnpFq7rVXql3kdRdiDfTgCB86gDtfQgCYQEPAIz/BiKevJerXeZtGClc/swi9Y71+xhJBq</latexit>

�w1
<latexit sha1_base64="qG+eVEePlJ2hQBNxbZqM3nSWdjI=">AAAB83icbVDLSsNAFJ3UV62vqks3g0VwVRItPnZFNy4r2Ac0IUwmN+3QyYOZiVJCf8ONC0Xc+jPu/BsnaRC1HrhwOOde7r3HSziTyjQ/jcrS8srqWnW9trG5tb1T393ryTgVFLo05rEYeEQCZxF0FVMcBokAEnoc+t7kOvf79yAki6M7NU3ACckoYgGjRGnJzmwfuCLuw8y13HrDbJoF8CKxStJAJTpu/cP2Y5qGECnKiZRDy0yUkxGhGOUwq9mphITQCRnBUNOIhCCdrLh5ho+04uMgFroihQv150RGQimnoac7Q6LG8q+Xi/95w1QFF07GoiRVENH5oiDlWMU4DwD7TABVfKoJoYLpWzEdE0Go0jHVihAuc5x9v7xIeidN67TZum012ldlHFV0gA7RMbLQOWqjG9RBXURRgh7RM3oxUuPJeDXe5q0Vo5zZR79gvH8BNJyR7g==</latexit>

⌘2
<latexit sha1_base64="unYIYtHHpEqe+OZK7pG+I2vElf8=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0YfNyCXjxGMA9IljA7mU3GzM4sM7NCCPkHLx4U8er/ePNvnN0sosaChqKqm+6uIOZMG9f9dJaWV1bX1gsbxc2t7Z3d0t5+S8tEEdokkkvVCbCmnAnaNMxw2okVxVHAaTsYX6d++4EqzaS4M5OY+hEeChYygo2VWj1qcL/aL5XdipsBLRIvJ2XI0eiXPnoDSZKICkM41rrrubHxp1gZRjidFXuJpjEmYzykXUsFjqj2p9m1M3RslQEKpbIlDMrUnxNTHGk9iQLbGWEz0n+9VPzP6yYmvPCnTMSJoYLMF4UJR0ai9HU0YIoSwyeWYKKYvRWREVaYGBtQMQvhMsXZ98uLpFWteKeV2m2tXL/K4yjAIRzBCXhwDnW4gQY0gcA9PMIzvDjSeXJenbd565KTzxzALzjvX0swjxU=</latexit>

�w2
<latexit sha1_base64="LTc2aUprMYuhZfr2kXjQgknMrUI=">AAAB83icbVDLSsNAFJ34rPVVdekmWARXJanFx67oxmUF+4AmhMnkph06mYSZiVJCf8ONC0Xc+jPu/BsnaRC1HrhwOOde7r3HTxiVyrI+jaXlldW19cpGdXNre2e3trffk3EqCHRJzGIx8LEERjl0FVUMBokAHPkM+v7kOvf79yAkjfmdmibgRnjEaUgJVlpyMicAprD3MPOaXq1uNawC5iKxS1JHJTpe7cMJYpJGwBVhWMqhbSXKzbBQlDCYVZ1UQoLJBI9gqCnHEUg3K26emcdaCcwwFrq4Mgv150SGIymnka87I6zG8q+Xi/95w1SFF25GeZIq4GS+KEyZqWIzD8AMqACi2FQTTATVt5pkjAUmSsdULUK4zHH2/fIi6TUb9mmjdduqt6/KOCroEB2hE2Sjc9RGN6iDuoigBD2iZ/RipMaT8Wq8zVuXjHLmAP2C8f4FNiCR7w==</latexit>

⇤0
2

<latexit sha1_base64="9G5WuXlF0xb1+7SrEbIIH78XeLI=">AAAB8XicbVDLSsNAFL3xWeur6tLNYBFdlbQWH7uiGxcuKtgHtqFMJpN26GQSZiZCCf0LNy4UcevfuPNvnKRB1Hpg4HDOucy9x404U9q2P62FxaXlldXCWnF9Y3Nru7Sz21ZhLAltkZCHsutiRTkTtKWZ5rQbSYoDl9OOO75K/c4DlYqF4k5PIuoEeCiYzwjWRrrv35ioh48GtUGpbFfsDGieVHNShhzNQemj74UkDqjQhGOlelU70k6CpWaE02mxHysaYTLGQ9ozVOCAKifJNp6iQ6N4yA+leUKjTP05keBAqUngmmSA9Uj99VLxP68Xa//cSZiIYk0FmX3kxxzpEKXnI49JSjSfGIKJZGZXREZYYqJNScWshIsUp98nz5N2rVI9qdRv6+XGZV5HAfbhAI6hCmfQgGtoQgsICHiEZ3ixlPVkvVpvs+iClc/swS9Y71+zCJBr</latexit>

Calculating metrics for Each Option:

⌘3
<latexit sha1_base64="BGtuJ4EC2mzqNVOk1IcXBvXOzyw=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexq8HELevEYwTwgWcLsZDYZMzuzzMwKIeQfvHhQxKv/482/cXaziBoLGoqqbrq7gpgzbVz30yksLa+srhXXSxubW9s75d29lpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvk799gNVmklxZyYx9SM8FCxkBBsrtXrU4P5pv1xxq24GtEi8nFQgR6Nf/ugNJEkiKgzhWOuu58bGn2JlGOF0VuolmsaYjPGQdi0VOKLan2bXztCRVQYolMqWMChTf05McaT1JApsZ4TNSP/1UvE/r5uY8MKfMhEnhgoyXxQmHBmJ0tfRgClKDJ9Ygoli9lZERlhhYmxApSyEyxRn3y8vktZJ1Tut1m5rlfpVHkcRDuAQjsGDc6jDDTSgCQTu4RGe4cWRzpPz6rzNWwtOPrMPv+C8fwFMtI8W</latexit>

�w3
<latexit sha1_base64="XKZyicMORHbMtSef1fiPsnxzNiY=">AAAB83icbVDLSsNAFJ3UV62vqks3wSK4KokWH7uiG5cV7AOaECaTm3boZBJmJkoJ/Q03LhRx68+482+cpEHUeuDC4Zx7ufceP2FUKsv6NCpLyyura9X12sbm1vZOfXevJ+NUEOiSmMVi4GMJjHLoKqoYDBIBOPIZ9P3Jde7370FIGvM7NU3AjfCI05ASrLTkZE4ATGHvYeadevWG1bQKmIvELkkDleh49Q8niEkaAVeEYSmHtpUoN8NCUcJgVnNSCQkmEzyCoaYcRyDdrLh5Zh5pJTDDWOjiyizUnxMZjqScRr7ujLAay79eLv7nDVMVXrgZ5UmqgJP5ojBlporNPAAzoAKIYlNNMBFU32qSMRaYKB1TrQjhMsfZ98uLpHfStE+brdtWo31VxlFFB+gQHSMbnaM2ukEd1EUEJegRPaMXIzWejFfjbd5aMcqZffQLxvsXN6SR8A==</latexit>

⇤0
3

<latexit sha1_base64="O1eoBArfvp9WyqHC1QZUQYeVtjY=">AAAB8XicbVDLSsNAFL3xWeur6tLNYBFdldQWH7uiGxcuKtgHtqFMJpN26GQSZiZCCf0LNy4UcevfuPNvnKRB1Hpg4HDOucy9x404U9q2P62FxaXlldXCWnF9Y3Nru7Sz21ZhLAltkZCHsutiRTkTtKWZ5rQbSYoDl9OOO75K/c4DlYqF4k5PIuoEeCiYzwjWRrrv35ioh48GtUGpbFfsDGieVHNShhzNQemj74UkDqjQhGOlelU70k6CpWaE02mxHysaYTLGQ9ozVOCAKifJNp6iQ6N4yA+leUKjTP05keBAqUngmmSA9Uj99VLxP68Xa//cSZiIYk0FmX3kxxzpEKXnI49JSjSfGIKJZGZXREZYYqJNScWshIsUp98nz5P2SaVaq9Rv6+XGZV5HAfbhAI6hCmfQgGtoQgsICHiEZ3ixlPVkvVpvs+iClc/swS9Y71+0jJBs</latexit>

⌘m
<latexit sha1_base64="yEov158uzSm5FnaQqXo67YXEmOM=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKWw0+LgFvXiMYB6QLGF2MpuMmdlZZnqFsOQfvHhQxKv/482/cXaziBoLGoqqbrq7/EhwA6776RSWlldW14rrpY3Nre2d8u5e26hYU9aiSijd9YlhgoesBRwE60aaEekL1vEn16nfeWDacBXewTRiniSjkAecErBSu8+ADOSgXHGrbga8SGo5qaAczUH5oz9UNJYsBCqIMb2aG4GXEA2cCjYr9WPDIkInZMR6loZEMuMl2bUzfGSVIQ6UthUCztSfEwmRxkylbzslgbH566Xif14vhuDCS3gYxcBCOl8UxAKDwunreMg1oyCmlhCqub0V0zHRhIINqJSFcJni7PvlRdI+qdZOq/XbeqVxlcdRRAfoEB2jGjpHDXSDmqiFKLpHj+gZvTjKeXJenbd5a8HJZ/bRLzjvX6Scj1A=</latexit>

�wm
<latexit sha1_base64="rUC1956v0TF+xLpLnZ23EdYZFJk=">AAAB83icbVDLSsNAFJ3UV62vqks3g0VwVRItPnZFNy4r2Ac0IUwmk3bozCTMTJQS+htuXCji1p9x5984SYOo9cCFwzn3cu89QcKo0rb9aVWWlldW16rrtY3Nre2d+u5eT8WpxKSLYxbLQYAUYVSQrqaakUEiCeIBI/1gcp37/XsiFY3FnZ4mxONoJGhEMdJGcjM3JEwj/2Hmc7/esJt2AbhInJI0QImOX/9wwxinnAiNGVJq6NiJ9jIkNcWMzGpuqkiC8ASNyNBQgThRXlbcPINHRglhFEtTQsNC/TmRIa7UlAemkyM9Vn+9XPzPG6Y6uvAyKpJUE4Hni6KUQR3DPAAYUkmwZlNDEJbU3ArxGEmEtYmpVoRwmePs++VF0jtpOqfN1m2r0b4q46iCA3AIjoEDzkEb3IAO6AIMEvAInsGLlVpP1qv1Nm+tWOXMPvgF6/0Lj4ySKg==</latexit>

⇤0
m

<latexit sha1_base64="ulJX4Ve/RJ/4ldwghJEaGl2cLPw=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovoqqRafOyKbly4qGAf2IYymUzaoZNJmJkIJfQv3LhQxK1/486/cZIGUeuBgcM55zL3HjfiTGnb/rQKC4tLyyvF1dLa+sbmVnl7p63CWBLaIiEPZdfFinImaEszzWk3khQHLqcdd3yV+p0HKhULxZ2eRNQJ8FAwnxGsjXTfvzFRDx8OgkG5YlftDGie1HJSgRzNQfmj74UkDqjQhGOlejU70k6CpWaE02mpHysaYTLGQ9ozVOCAKifJNp6iA6N4yA+leUKjTP05keBAqUngmmSA9Uj99VLxP68Xa//cSZiIYk0FmX3kxxzpEKXnI49JSjSfGIKJZGZXREZYYqJNSaWshIsUp98nz5P2cbV2Uq3f1iuNy7yOIuzBPhxBDc6gAdfQhBYQEPAIz/BiKevJerXeZtGClc/swi9Y718Mg5Cm</latexit>

Generating Network

Algorithm
Inputs

Load variability:
Communication:

Overlapped Computations:

Analyzing
Paths+

Converting to DAG G =
�
V (wi), E(�j)

�
<latexit sha1_base64="culQV9HZ/vGyiVmFV3ZRbEGBTA4=">AAACEnicbVBLS8NAGNzUV62vqEcvwSI0ICXR4uMgFEX0WME+oAlhs920azcPdjdKCf0NXvwrXjwo4tWTN/+NmzSIWgcWhpnv290ZN6KEC8P4VAozs3PzC8XF0tLyyuqaur7R4mHMEG6ikIas40KOKQlwUxBBcSdiGPouxW13eJb67VvMOAmDazGKsO3DfkA8gqCQkqPqlg/FAEGaXIxPLJf0K63KnUP03fOKReU1Pejc6KmuO2rZqBoZtGli5qQMcjQc9cPqhSj2cSAQhZx3TSMSdgKZIIjiccmKOY4gGsI+7koaQB9zO8kijbUdqfQ0L2TyBELL1J8bCfQ5H/munEwD8L9eKv7ndWPhHdkJCaJY4ABNHvJiqolQS/vReoRhJOhIEogYkX/V0AAyiIRssZSVcJzi4DvyNGntVc39au2qVq6f5nUUwRbYBhVggkNQB5egAZoAgXvwCJ7Bi/KgPCmvyttktKDkO5vgF5T3L2RanMo=</latexit>

Several Partitioning Options ()m
<latexit sha1_base64="jL0hCFnUbCC2QpbU7j/X9MeFIQs=">AAAB6HicbVDLSgNBEJz1GeMr6tHLYBA8hV0NPm5BLx4TMA9IljA76SRjZmaXmVkhLPkCLx4U8eonefNvnN0sosaChqKqm+6uIOJMG9f9dJaWV1bX1gsbxc2t7Z3d0t5+S4exotCkIQ9VJyAaOJPQNMxw6EQKiAg4tIPJTeq3H0BpFso7M43AF2Qk2ZBRYqzUEP1S2a24GfAi8XJSRjnq/dJHbxDSWIA0lBOtu54bGT8hyjDKYVbsxRoiQidkBF1LJRGg/SQ7dIaPrTLAw1DZkgZn6s+JhAitpyKwnYKYsf7rpeJ/Xjc2w0s/YTKKDUg6XzSMOTYhTr/GA6aAGj61hFDF7K2Yjoki1NhsilkIVynOv19eJK3TindWqTaq5dp1HkcBHaIjdII8dIFq6BbVURNRBOgRPaMX5955cl6dt3nrkpPPHKBfcN6/AO6njSk=</latexit>

Fig. 6: Calculating Concurrency Score – Summarizing steps
for deriving the score.

fast. Note that solving this problem is a pre-processing step,
which does not affect runtime.
Concurrency Score: Now, we have the tools to calculate the
concurrency score, CS. Figure 6 summarizes all the steps to
derive our metrics: Load variability, δw; total amount of com-
munication, Λ; and overlapped computations, η. Hypergraph
algorithm accepts the number of units and a higher bound of ε.
By changing the ε, we create a set of partitioning options, for
each of which we compute all the metrics. Note that the DAG
input requires a weight and cost value for every vertex and
edge, respectively. Both of these values are easily derivable.
The weight of a vertex is directly proportional to its floating
operations (FLOPs), reported by most frameworks. The cost
of an edge is directly proportional to the transferred data size.
To get CS, first, we need to normalize the communication
metric. We write Λ as Λ′ = Λ/(Uc×n), in which Uc is a unit
of data and n is the number of units. We define

CS =
1/3
√

δawΛ′bηc, (4)

as a custom concurrency score, in which a, b and c are constant
that show the relative importance of each metric for a user. In
this paper, we assume a = c = 1 and b = 1.5, for a higher
priority for communication. We chose Uc as the smallest
amount of communication for an edge in a generator. Hence,
a higher CS value shows poor distribution and concurrency
opportunities.

IV. EXPERIMENTAL ANALYSIS

In this section, we evaluate our generated architectures
by comparing our customized generator and transformation
process with prior work. The results demonstrate that our gen-
erated architectures preserve accuracy while achieving better
concurrency scores by removing the implicit bias of single-
chain dependency. Besides, by running the final architecture
on actual devices, we show that the concurrency score provides
a reasonable heuristic about the real performance.

A. Experimental Setup

Generators: All generators use probabilistic scaling blocks.
FB represents prior work in unbiased NAS with staging
blocks [17]. As mentioned in §III-A, although ER, BA, and
WS generators are based on [17], we remove the staging block
that causes the limited concurrency. As a result, all the studied

To
ta

l
C

om
m

un
ic

at
io

n
(M

B
)

Sm
al

le
r=

Be
tte

r

Significant Accuracy Loss

(a) |V| = 40,

|P| = 4

<latexit sha1_base64="NAofRERe2SYP6EFR6HDmCVstfcc=">AAACHXicbZDLSsNAFIYn9VbjLerSTbAoFaQkElAEoeDGZQV7gSaUyXTSDp1cmDkRSxofxI2v4saFIi7ciG9j0nZRW38Y+PnOOcw5vxtxJsEwfpTC0vLK6lpxXd3Y3Nre0Xb3GjKMBaF1EvJQtFwsKWcBrQMDTluRoNh3OW26g+u83rynQrIwuINhRB0f9wLmMYIhQx3NUm2gD+B6SRmfpI/HI9vH0CeYJ410dGUZp6ptz8BaDtWOVjIqxlj6ojGnpoSmqnW0L7sbktinARCOpWybRgROggUwwmmq2rGkESYD3KPtzAbYp9JJxtel+lFGuroXiuwFoI/p7ESCfSmHvpt15mvK+VoO/6u1Y/AunIQFUQw0IJOPvJjrEOp5VHqXCUqADzODiWDZrjrpY4EJZIHmIZjzJy+axlnFtCrWrVWqXk7jKKIDdIjKyETnqIpuUA3VEUFP6AW9oXflWXlVPpTPSWtBmc7soz9Svn8BzZyhFQ==</latexit>

(b) |V| = 40,

|P| = 6

<latexit sha1_base64="HezWyiu0BbkQlq6NocOLd03Ygiw=">AAACGnicbZDLSsNAFIYn9VbrLerSTbAoFaQkElQEoeDGZQV7gSaUyXTSDp1cmDkRS1pfw42v4saFIu7EjW/jpO2iVn8Y+PnOOcw5vxdzJsE0v7XcwuLS8kp+tbC2vrG5pW/v1GWUCEJrJOKRaHpYUs5CWgMGnDZjQXHgcdrw+ldZvXFHhWRReAuDmLoB7obMZwSDQm3dcoDeg+enJe9o9HA4dAIMPYJ5Wh8NL23z2HFmWFWx07ZeNMvmWMZfY01NEU1VbeufTiciSUBDIBxL2bLMGNwUC2CE01HBSSSNMenjLm0pG+KASjcdnzYyDhTpGH4k1AvBGNPZiRQHUg4CT3VmW8r5Wgb/q7US8M/dlIVxAjQkk4/8hBsQGVlORocJSoAPlMFEMLWrQXpYYAIqzYIKwZo/+a+pn5Qtu2zf2MXKxTSOPNpD+6iELHSGKugaVVENEfSIntEretOetBftXfuYtOa06cwu+iXt6wcUJ6Dc</latexit>

(c) |V| = 40,

|P| = 8

<latexit sha1_base64="c/9KxiVCKGvb8T0ZeBFW22X0Pj0=">AAACGnicbZDLSsNAFIYnXmu9VV26CRalgpREChZBKLhxWcFeoAllMp20QycXZk7EksbXcOOruHGhiDtx49s4abOorT8M/HznHOac3wk5k2AYP9rS8srq2npuI7+5tb2zW9jbb8ogEoQ2SMAD0XawpJz5tAEMOG2HgmLP4bTlDK/TeuueCskC/w5GIbU93PeZywgGhboF0wL6AI4bl8hp8ngytjwMA4J53EzGVxXjzLJmWF2xardQNMrGRPqiMTNTRJnq3cKX1QtI5FEfCMdSdkwjBDvGAhjhNMlbkaQhJkPcpx1lfexRaceT0xL9WJGe7gZCPR/0CZ2diLEn5chzVGe6pZyvpfC/WicCt2rHzA8joD6ZfuRGXIdAT3PSe0xQAnykDCaCqV11MsACE1Bp5lUI5vzJi6Z5XjYr5cptpVi7zOLIoUN0hErIRBeohm5QHTUQQU/oBb2hd+1Ze9U+tM9p65KWzRygP9K+fwEY2qDf</latexit>

(d) |V| = 40,

|P| = 10

<latexit sha1_base64="OuZAiQnzgkqy3Au2NF9oK3JKlgs=">AAACG3icbZDLSsNAFIYnXmu9VV26CRalgpSkFBRBKLhxWcFeoAllMpm0QycXZk7EksbncOOruHGhiCvBhW/jpO2itv4w8POdc5hzfifiTIJh/GhLyyura+u5jfzm1vbObmFvvynDWBDaICEPRdvBknIW0AYw4LQdCYp9h9OWM7jO6q17KiQLgzsYRtT2cS9gHiMYFOoWKhbQB3C8pOSepo8nI8vH0CeYJ810dFU1zixrhtUVM41uoWiUjbH0RWNOTRFNVe8Wviw3JLFPAyAcS9kxjQjsBAtghNM0b8WSRpgMcI92lA2wT6WdjG9L9WNFXN0LhXoB6GM6O5FgX8qh76jObE05X8vgf7VODN6FnbAgioEGZPKRF3MdQj0LSneZoAT4UBlMBFO76qSPBSag4syrEMz5kxdNs1I2q+XqbbVYu5zGkUOH6AiVkInOUQ3doDpqIIKe0At6Q+/as/aqfWifk9YlbTpzgP5I+/4FkFGhEw==</latexit>

Best Prior Work This Work

Fig. 7: Total Communication with Distribution – Measured
communication in MB for 1000 sampled architectures in each
category for 40 vertices on {4,6,8,10} units.

N
or

m
al

iz
ed

In

fe
re

nc
e

Ti
m

e
to

 F
B

 (L
og

)
Sm

al
le

r=
Be

tte
r

Significant Accuracy LossBest Prior Work This Work

(a) |V| = 40,

|P| = 4

<latexit sha1_base64="NAofRERe2SYP6EFR6HDmCVstfcc=">AAACHXicbZDLSsNAFIYn9VbjLerSTbAoFaQkElAEoeDGZQV7gSaUyXTSDp1cmDkRSxofxI2v4saFIi7ciG9j0nZRW38Y+PnOOcw5vxtxJsEwfpTC0vLK6lpxXd3Y3Nre0Xb3GjKMBaF1EvJQtFwsKWcBrQMDTluRoNh3OW26g+u83rynQrIwuINhRB0f9wLmMYIhQx3NUm2gD+B6SRmfpI/HI9vH0CeYJ410dGUZp6ptz8BaDtWOVjIqxlj6ojGnpoSmqnW0L7sbktinARCOpWybRgROggUwwmmq2rGkESYD3KPtzAbYp9JJxtel+lFGuroXiuwFoI/p7ESCfSmHvpt15mvK+VoO/6u1Y/AunIQFUQw0IJOPvJjrEOp5VHqXCUqADzODiWDZrjrpY4EJZIHmIZjzJy+axlnFtCrWrVWqXk7jKKIDdIjKyETnqIpuUA3VEUFP6AW9oXflWXlVPpTPSWtBmc7soz9Svn8BzZyhFQ==</latexit>

(b) |V| = 40,

|P| = 6

<latexit sha1_base64="HezWyiu0BbkQlq6NocOLd03Ygiw=">AAACGnicbZDLSsNAFIYn9VbrLerSTbAoFaQkElQEoeDGZQV7gSaUyXTSDp1cmDkRS1pfw42v4saFIu7EjW/jpO2iVn8Y+PnOOcw5vxdzJsE0v7XcwuLS8kp+tbC2vrG5pW/v1GWUCEJrJOKRaHpYUs5CWgMGnDZjQXHgcdrw+ldZvXFHhWRReAuDmLoB7obMZwSDQm3dcoDeg+enJe9o9HA4dAIMPYJ5Wh8NL23z2HFmWFWx07ZeNMvmWMZfY01NEU1VbeufTiciSUBDIBxL2bLMGNwUC2CE01HBSSSNMenjLm0pG+KASjcdnzYyDhTpGH4k1AvBGNPZiRQHUg4CT3VmW8r5Wgb/q7US8M/dlIVxAjQkk4/8hBsQGVlORocJSoAPlMFEMLWrQXpYYAIqzYIKwZo/+a+pn5Qtu2zf2MXKxTSOPNpD+6iELHSGKugaVVENEfSIntEretOetBftXfuYtOa06cwu+iXt6wcUJ6Dc</latexit>

(c) |V| = 40,

|P| = 8

<latexit sha1_base64="c/9KxiVCKGvb8T0ZeBFW22X0Pj0=">AAACGnicbZDLSsNAFIYnXmu9VV26CRalgpREChZBKLhxWcFeoAllMp20QycXZk7EksbXcOOruHGhiDtx49s4abOorT8M/HznHOac3wk5k2AYP9rS8srq2npuI7+5tb2zW9jbb8ogEoQ2SMAD0XawpJz5tAEMOG2HgmLP4bTlDK/TeuueCskC/w5GIbU93PeZywgGhboF0wL6AI4bl8hp8ngytjwMA4J53EzGVxXjzLJmWF2xardQNMrGRPqiMTNTRJnq3cKX1QtI5FEfCMdSdkwjBDvGAhjhNMlbkaQhJkPcpx1lfexRaceT0xL9WJGe7gZCPR/0CZ2diLEn5chzVGe6pZyvpfC/WicCt2rHzA8joD6ZfuRGXIdAT3PSe0xQAnykDCaCqV11MsACE1Bp5lUI5vzJi6Z5XjYr5cptpVi7zOLIoUN0hErIRBeohm5QHTUQQU/oBb2hd+1Ze9U+tM9p65KWzRygP9K+fwEY2qDf</latexit>

(d) |V| = 40,

|P| = 10

<latexit sha1_base64="OuZAiQnzgkqy3Au2NF9oK3JKlgs=">AAACG3icbZDLSsNAFIYnXmu9VV26CRalgpSkFBRBKLhxWcFeoAllMpm0QycXZk7EksbncOOruHGhiCvBhW/jpO2itv4w8POdc5hzfifiTIJh/GhLyyura+u5jfzm1vbObmFvvynDWBDaICEPRdvBknIW0AYw4LQdCYp9h9OWM7jO6q17KiQLgzsYRtT2cS9gHiMYFOoWKhbQB3C8pOSepo8nI8vH0CeYJ810dFU1zixrhtUVM41uoWiUjbH0RWNOTRFNVe8Wviw3JLFPAyAcS9kxjQjsBAtghNM0b8WSRpgMcI92lA2wT6WdjG9L9WNFXN0LhXoB6GM6O5FgX8qh76jObE05X8vgf7VODN6FnbAgioEGZPKRF3MdQj0LSneZoAT4UBlMBFO76qSPBSag4syrEMz5kxdNs1I2q+XqbbVYu5zGkUOH6AiVkInOUQ3doDpqIIKe0At6Q+/as/aqfWifk9YlbTpzgP5I+/4FkFGhEw==</latexit>

Fig. 8: Inference Time – Normalized inference time normal-
ized to FB (§IV-A) for 1000 sampled architectures in each
category for 40 vertices on {4,6,8,10} units.

network generators and resulting architectures are novel and
have never been studied before.
Randomization: To evaluate the accuracy of randomly gen-
erated architecture, we collect representative samples with no
optimized search. we followed the same training procedure for
architectures and reported the average accuracy. For CS, total
communication, and computation time evaluations, we collect
1,000 samples with no optimized search and compare across
different generators.
Datasets: We conducted experiments on multiple datasets to
ensure the extensibility of concurrent architectures. We use
two image classification datasets; (i) Cifar-10 [50], which
contains 60K 32×32 images in 10 classes; and (ii) Flower-
102 [51], which contains 16K 224×224 images in 102 classes.
We strongly encourage future extensive studies on larger
datasets, but given the heavy-compute bound of NAS-based
experiments, we chose to use representative datasets studied
in most of the prior works [52].
Training Procedure: We use a uniform training pipeline with
a stochastic gradient descent optimizer for all architectures. We
train on Cifar-10 with 100 epochs and on Flower-102 with 300
epochs. We report the top-1 classification accuracy on the test
sets. For the first 100 epochs, we set the learning rate to be
1e-3 and momentum to be 0.9. We changed the learning rate
to 5e-4 and momentum to 0.95 for the remaining 200 epochs
on Flower-102.
Implementation: We implemented all graph representations
in Python NetworkX [53] library. Then, we convert a graph
to a PyTorch [54] compatible model. We constructed a graph-
based forwarding path in PyTorch module class to directly
reproduce the graph structure.

B. Experiments

We analyze the results from three perspectives, communica-
tion, latency, and concurrency score. Because we are interested

250

Best Prior Work This Work

(a) |V| = 40,

|P| = 4

<latexit sha1_base64="NAofRERe2SYP6EFR6HDmCVstfcc=">AAACHXicbZDLSsNAFIYn9VbjLerSTbAoFaQkElAEoeDGZQV7gSaUyXTSDp1cmDkRSxofxI2v4saFIi7ciG9j0nZRW38Y+PnOOcw5vxtxJsEwfpTC0vLK6lpxXd3Y3Nre0Xb3GjKMBaF1EvJQtFwsKWcBrQMDTluRoNh3OW26g+u83rynQrIwuINhRB0f9wLmMYIhQx3NUm2gD+B6SRmfpI/HI9vH0CeYJ410dGUZp6ptz8BaDtWOVjIqxlj6ojGnpoSmqnW0L7sbktinARCOpWybRgROggUwwmmq2rGkESYD3KPtzAbYp9JJxtel+lFGuroXiuwFoI/p7ESCfSmHvpt15mvK+VoO/6u1Y/AunIQFUQw0IJOPvJjrEOp5VHqXCUqADzODiWDZrjrpY4EJZIHmIZjzJy+axlnFtCrWrVWqXk7jKKIDdIjKyETnqIpuUA3VEUFP6AW9oXflWXlVPpTPSWtBmc7soz9Svn8BzZyhFQ==</latexit>

(b) |V| = 40,

|P| = 6

<latexit sha1_base64="HezWyiu0BbkQlq6NocOLd03Ygiw=">AAACGnicbZDLSsNAFIYn9VbrLerSTbAoFaQkElQEoeDGZQV7gSaUyXTSDp1cmDkRS1pfw42v4saFIu7EjW/jpO2iVn8Y+PnOOcw5vxdzJsE0v7XcwuLS8kp+tbC2vrG5pW/v1GWUCEJrJOKRaHpYUs5CWgMGnDZjQXHgcdrw+ldZvXFHhWRReAuDmLoB7obMZwSDQm3dcoDeg+enJe9o9HA4dAIMPYJ5Wh8NL23z2HFmWFWx07ZeNMvmWMZfY01NEU1VbeufTiciSUBDIBxL2bLMGNwUC2CE01HBSSSNMenjLm0pG+KASjcdnzYyDhTpGH4k1AvBGNPZiRQHUg4CT3VmW8r5Wgb/q7US8M/dlIVxAjQkk4/8hBsQGVlORocJSoAPlMFEMLWrQXpYYAIqzYIKwZo/+a+pn5Qtu2zf2MXKxTSOPNpD+6iELHSGKugaVVENEfSIntEretOetBftXfuYtOa06cwu+iXt6wcUJ6Dc</latexit>

(c) |V| = 40,

|P| = 8

<latexit sha1_base64="c/9KxiVCKGvb8T0ZeBFW22X0Pj0=">AAACGnicbZDLSsNAFIYnXmu9VV26CRalgpREChZBKLhxWcFeoAllMp20QycXZk7EksbXcOOruHGhiDtx49s4abOorT8M/HznHOac3wk5k2AYP9rS8srq2npuI7+5tb2zW9jbb8ogEoQ2SMAD0XawpJz5tAEMOG2HgmLP4bTlDK/TeuueCskC/w5GIbU93PeZywgGhboF0wL6AI4bl8hp8ngytjwMA4J53EzGVxXjzLJmWF2xardQNMrGRPqiMTNTRJnq3cKX1QtI5FEfCMdSdkwjBDvGAhjhNMlbkaQhJkPcpx1lfexRaceT0xL9WJGe7gZCPR/0CZ2diLEn5chzVGe6pZyvpfC/WicCt2rHzA8joD6ZfuRGXIdAT3PSe0xQAnykDCaCqV11MsACE1Bp5lUI5vzJi6Z5XjYr5cptpVi7zOLIoUN0hErIRBeohm5QHTUQQU/oBb2hd+1Ze9U+tM9p65KWzRygP9K+fwEY2qDf</latexit>

(d) |V| = 40,

|P| = 10

<latexit sha1_base64="OuZAiQnzgkqy3Au2NF9oK3JKlgs=">AAACG3icbZDLSsNAFIYnXmu9VV26CRalgpSkFBRBKLhxWcFeoAllMpm0QycXZk7EksbncOOruHGhiCvBhW/jpO2itv4w8POdc5hzfifiTIJh/GhLyyura+u5jfzm1vbObmFvvynDWBDaICEPRdvBknIW0AYw4LQdCYp9h9OWM7jO6q17KiQLgzsYRtT2cS9gHiMYFOoWKhbQB3C8pOSepo8nI8vH0CeYJ810dFU1zixrhtUVM41uoWiUjbH0RWNOTRFNVe8Wviw3JLFPAyAcS9kxjQjsBAtghNM0b8WSRpgMcI92lA2wT6WdjG9L9WNFXN0LhXoB6GM6O5FgX8qh76jObE05X8vgf7VODN6FnbAgioEGZPKRF3MdQj0LSneZoAT4UBlMBFO76qSPBSag4syrEMz5kxdNs1I2q+XqbbVYu5zGkUOH6AiVkInOUQ3doDpqIIKe0At6Q+/as/aqfWifk9YlbTpzgP5I+/4FkFGhEw==</latexit>

(e) |V| = 80,

|P| = 4

<latexit sha1_base64="JIqf3a7CcUffY4eflhXVTKMOSvo=">AAACHXicbZDLSsNAFIYnXmu8VV26CRalgpREAhZBKLhxWcG2QlPKZHqig5MLMydiSeuDuPFV3LhQxIUb8W2ctF3Uyw8DP985hznn9xPBFdr2lzEzOze/sFhYMpdXVtfWixubTRWnkkGDxSKWlz5VIHgEDeQo4DKRQENfQMu/Oc3rrVuQisfRBfYT6IT0KuIBZxQ16hZd00O4Qz/IyrA/vN8beCHFa0ZF1hwOTqr2gel5U7CuoWt2iyW7Yo9k/TXOxJTIRPVu8cPrxSwNIUImqFJtx06wk1GJnAkYml6qIKHshl5BW9uIhqA62ei6obWrSc8KYqlfhNaITk9kNFSqH/q6M19T/a7l8L9aO8Wg2sl4lKQIERt/FKTCwtjKo7J6XAJD0deGMsn1rha7ppIy1IHmITi/T/5rmocVx624526pdjyJo0C2yQ4pE4cckRo5I3XSIIw8kCfyQl6NR+PZeDPex60zxmRmi/yQ8fkN2rihHQ==</latexit>

(f) |V| = 80,

|P| = 6

<latexit sha1_base64="B9AELSTI6ULfTsDPK/SB8cIosOA=">AAACHXicbZDLSsNAFIYn9VbjrerSTbAoFaQkErQIQsGNywr2Ak0pk+mkHTq5MHMilrQ+iBtfxY0LRVy4Ed/GSdtFbf1h4Oc75zDn/G7EmQTT/NEyS8srq2vZdX1jc2t7J7e7V5NhLAitkpCHouFiSTkLaBUYcNqIBMW+y2nd7V+n9fo9FZKFwR0MItrycTdgHiMYFGrnbN0B+gCulxS8k9Hj8dDxMfQI5kltNLwqmae648zAioLnejuXN4vmWMaisaYmj6aqtHNfTicksU8DIBxL2bTMCFoJFsAIpyPdiSWNMOnjLm0qG2CfylYyvm5kHCnSMbxQqBeAMaazEwn2pRz4rupM15TztRT+V2vG4JVaCQuiGGhAJh95MTcgNNKojA4TlAAfKIOJYGpXg/SwwARUoGkI1vzJi6Z2VrTson1r58uX0ziy6AAdogKy0AUqoxtUQVVE0BN6QW/oXXvWXrUP7XPSmtGmM/voj7TvX99voSA=</latexit>

(g) |V| = 80,

|P| = 8

<latexit sha1_base64="UXD/jtLPIvMyqZ4iGhlZWzUUvbA=">AAACHXicbZDLSsNAFIYnXmu8RV26CRalgpREAhZBKLhxWcFeoAllMp20QycXZk7EksYHceOruHGhiAs34tuYtF3U1h8Gfr5zDnPO70acSTCMH2VpeWV1bb2woW5ube/sanv7DRnGgtA6CXkoWi6WlLOA1oEBp61IUOy7nDbdwXVeb95TIVkY3MEwoo6PewHzGMGQoY5mqTbQB3C9pNQ7TR9PRraPoU8wTxrp6KpinKm2PQNrOVQ7WtEoG2Ppi8acmiKaqtbRvuxuSGKfBkA4lrJtGhE4CRbACKepaseSRpgMcI+2Mxtgn0onGV+X6scZ6epeKLIXgD6msxMJ9qUc+m7Wma8p52s5/K/WjsGrOAkLohhoQCYfeTHXIdTzqPQuE5QAH2YGE8GyXXXSxwITyALNQzDnT140jfOyaZWtW6tYvZzGUUCH6AiVkIkuUBXdoBqqI4Ke0At6Q+/Ks/KqfCifk9YlZTpzgP5I+f4F5CahIw==</latexit>

(h) |V| = 80,

|P| = 10

<latexit sha1_base64="yzitSq6yLFYgZwkN7Evxo41csl4=">AAACHnicbZDLSsNAFIYn9VbjLerSTbAoFaQkUrEIQsGNywr2Ak0pk+mkHTq5MHMilrS+iBtfxY0LRQRX+jZO2i5q6w8DP985hznndyPOJFjWj5ZZWl5ZXcuu6xubW9s7xu5eTYaxILRKQh6Khosl5SygVWDAaSMSFPsup3W3f53W6/dUSBYGdzCIaMvH3YB5jGBQqG2c6w7QB3C9JN87GT0eDx0fQ49gntRGw6uSdao7zgysKGhbetvIWQVrLHPR2FOTQ1NV2saX0wlJ7NMACMdSNm0rglaCBTDC6Uh3YkkjTPq4S5vKBtinspWMzxuZR4p0TC8U6gVgjunsRIJ9KQe+qzrTPeV8LYX/1ZoxeKVWwoIoBhqQyUdezE0IzTQrs8MEJcAHymAimNrVJD0sMAGVaBqCPX/yoqmdFexioXhbzJUvp3Fk0QE6RHlkowtURjeogqqIoCf0gt7Qu/asvWof2uekNaNNZ/bRH2nfv1v5oVc=</latexit>

C
on

cu
rr

en
cy

 S
co

re
(L

og
 S

ca
le

)
Sm

al
le

r=
Be

tte
r

C
on

cu
rr

en
cy

 S
co

re
(L

og
 S

ca
le

)
Sm

al
le

r=
Be

tte
r

Fig. 9: Concurrency Scores – Measured CS for 1000 sam-
pled architectures in each category with {40,80} vertices on
{4,6,8,10} units (§IV-A).

in finding a general solution, we start with the architecture
stability evaluation that particularly focuses on the architecture
parameter size. Then, we show the generated architectures
achieve competitive accuracies, while, in the last part, we
illustrate the high concurrency and distribution opportunities
of these architectures.
Architecture Stability: For the architecture stability experi-
ment, we used a fixed number of 40 building blocks. We cre-
ated 1,000 samples from each network generator. We recorded
mean and standard deviation regarding the parameter sizes. We
also evaluate the architecture stability under different staging
design choices (greedy vs probabilistic). From Table IV, we
see that proposed generators with greedy scaling blocks creates
larger but more stable architectures than with probabilistic
scaling blocks. Additionally, we see that our proposed DP
generator creates the most efficient architecture. We will see
that architectures that use DP generators are generally the most
optimized.
Accuracy Study: Here, we demonstrate that the concurrent
architectures achieve competitive accuracy on both Cifar-10
and Flower-102 datasets. Given the heavy-compute bound
of NAS-based experiments, we encourage further studies on
larger datasets. We used the same architecture samples as
before without any optimized search and reported both mean
and best results. As shown in Table V and VI, our concurrent
architectures achieve comparable accuracy on both datasets.
Generated DNNs achieve better or similar accuracy on Cifar-
10. For Flower-102, because both network generation and
transformation processes have more randomness, the mean
accuracy has a small gap compared to the baseline. However,

TABLE IV: Parameter Size Stability – The mean and
standard deviation of parameter size in sampled generated
architectures with different staging.

ER AB WS DP
Greedy Mean 48.63 48.33 42.03 35.03
Staging Std 1.11 0.91 1.28 2.25

ProbabilisticMean 46.03 45.63 36.44 26.69
Staging Std 2.70 4.41 3.52 3.05

TABLE V: Concurrent Architectures on Cifar-10 – Overall
sampled metrics.

Mean
Acc.

Best
Acc.

Mean
Acc./Param.

Best
Acc./Param.

CifarNet 80.70 80.70 5.38 5.38
ER 81.33 81.81 4.94 5.03
BA 80.29 81.66 4.81 4.92
WS 79.89 81.45 4.75 4.84
DP 80.87 82.47 4.81 4.90

TABLE VI: Concurrent Architects on Flower-102 – Overall
sampled metrics.

Mean
Acc.

Best
Acc.

Mean
Acc./Param.

Best
Acc./Param.

ResNet-50 87.80 87.80 3.43 3.43
ER 84.88 86.20 2.11 2.43
BA 82.91 84.62 2.41 2.91
WS 81.46 86.57 3.17 3.10
DP 84.66 86.69 3.19 3.28

the best accuracy is close to the baseline, so we believe the
accuracy gap can be leveraged by conducting an optimized
search in terms of accuracy.

Concurrency Study: Finally, to show improved distribution
and concurrency opportunities, we examined the concurrency
score of our architectures to ResNet-50 and FB (§IV-A) by
sketching width/depth histograms in Figure 10. As shown, we
achieve higher width/depth, which enables more concurrency,
while provides lower maximum depth, which enables shorter
execution time. To quantitatively compare the generators and
FB, Figure 9 depicts concurrency scores, summarized on over
1000 architectures in each category per set. As seen, our
generators (and specifically DP) consistently gain the best
score. Moreover, to gain more insights, Figure 7 and 8 illus-
trate total communication with distribution and inference (i.e.
computation) time, when each architecture is deployed on |P|
units. We see that though ER and BA methods deliver better
computation speedup, they suffer performance slow down
more from data communication. For our new generator, DP,
we see an 6–7x speedup in inference time. We observe a close
relationship between the reported score and actual latency and
communication. In fact, latency and communication measure
performance in an orthogonal way, but CS score captures the
overall efficiency of the generated architecture pretty well and
could be used in future studies.

(a) ResNet50 (b) FB

(d) DP & ER

Depth Depth

Depth

W
id

th
 (l

og
)

W
id

th
 (l

og
)

W
id

th
 (l

og
)

M
or

e
Pa

ra
lle

lis
mLonger Execution Time/<latexit sha1_base64="Zv3F3+B3mqrx1EfTuiSuBwv3IRI=">AAAB7nicbVDLSgMxFM34rPVVdekmWARXZaatbWdXdOOygn1AO5RMmmlDM0lIMkIZ+hFuXCji1u9x59+YaYv4OnDhcM693HtPKBnVxnU/nLX1jc2t7dxOfndv/+CwcHTc0SJRmLSxYEL1QqQJo5y0DTWM9KQiKA4Z6YbT68zv3hOlqeB3ZiZJEKMxpxHFyFipO5BKSCOGhaJb8iqe69egW6pUK16jbonrXvplH3qWZCiCFVrDwvtgJHASE24wQ1r3PVeaIEXKUMzIPD9INJEIT9GY9C3lKCY6SBfnzuG5VUYwEsoWN3Chfp9IUaz1LA5tZ4zMRP/2MvE/r5+YqBGklMvEEI6Xi6KEQSNg9jscUUWwYTNLEFbU3grxBCmEjU0ovwjBz1D7evkv6ZRtUKXqbbXYvFrFkQOn4AxcAA/UQRPcgBZoAwym4AE8gWdHOo/Oi/O6bF1zVjMn4Aect08iWZA/</latexit> Longer Execution Time/<latexit sha1_base64="Zv3F3+B3mqrx1EfTuiSuBwv3IRI=">AAAB7nicbVDLSgMxFM34rPVVdekmWARXZaatbWdXdOOygn1AO5RMmmlDM0lIMkIZ+hFuXCji1u9x59+YaYv4OnDhcM693HtPKBnVxnU/nLX1jc2t7dxOfndv/+CwcHTc0SJRmLSxYEL1QqQJo5y0DTWM9KQiKA4Z6YbT68zv3hOlqeB3ZiZJEKMxpxHFyFipO5BKSCOGhaJb8iqe69egW6pUK16jbonrXvplH3qWZCiCFVrDwvtgJHASE24wQ1r3PVeaIEXKUMzIPD9INJEIT9GY9C3lKCY6SBfnzuG5VUYwEsoWN3Chfp9IUaz1LA5tZ4zMRP/2MvE/r5+YqBGklMvEEI6Xi6KEQSNg9jscUUWwYTNLEFbU3grxBCmEjU0ovwjBz1D7evkv6ZRtUKXqbbXYvFrFkQOn4AxcAA/UQRPcgBZoAwym4AE8gWdHOo/Oi/O6bF1zVjMn4Aect08iWZA/</latexit>

Longer Execution Time/<latexit sha1_base64="Zv3F3+B3mqrx1EfTuiSuBwv3IRI=">AAAB7nicbVDLSgMxFM34rPVVdekmWARXZaatbWdXdOOygn1AO5RMmmlDM0lIMkIZ+hFuXCji1u9x59+YaYv4OnDhcM693HtPKBnVxnU/nLX1jc2t7dxOfndv/+CwcHTc0SJRmLSxYEL1QqQJo5y0DTWM9KQiKA4Z6YbT68zv3hOlqeB3ZiZJEKMxpxHFyFipO5BKSCOGhaJb8iqe69egW6pUK16jbonrXvplH3qWZCiCFVrDwvtgJHASE24wQ1r3PVeaIEXKUMzIPD9INJEIT9GY9C3lKCY6SBfnzuG5VUYwEsoWN3Chfp9IUaz1LA5tZ4zMRP/2MvE/r5+YqBGklMvEEI6Xi6KEQSNg9jscUUWwYTNLEFbU3grxBCmEjU0ovwjBz1D7evkv6ZRtUKXqbbXYvFrFkQOn4AxcAA/UQRPcgBZoAwym4AE8gWdHOo/Oi/O6bF1zVjMn4Aect08iWZA/</latexit>

M
or

e
Pa

ra
lle

lis
m

(c) BA & WS
Depth

W
id

th
 (l

og
) Longer Execution Time/<latexit sha1_base64="Zv3F3+B3mqrx1EfTuiSuBwv3IRI=">AAAB7nicbVDLSgMxFM34rPVVdekmWARXZaatbWdXdOOygn1AO5RMmmlDM0lIMkIZ+hFuXCji1u9x59+YaYv4OnDhcM693HtPKBnVxnU/nLX1jc2t7dxOfndv/+CwcHTc0SJRmLSxYEL1QqQJo5y0DTWM9KQiKA4Z6YbT68zv3hOlqeB3ZiZJEKMxpxHFyFipO5BKSCOGhaJb8iqe69egW6pUK16jbonrXvplH3qWZCiCFVrDwvtgJHASE24wQ1r3PVeaIEXKUMzIPD9INJEIT9GY9C3lKCY6SBfnzuG5VUYwEsoWN3Chfp9IUaz1LA5tZ4zMRP/2MvE/r5+YqBGklMvEEI6Xi6KEQSNg9jscUUWwYTNLEFbU3grxBCmEjU0ovwjBz1D7evkv6ZRtUKXqbbXYvFrFkQOn4AxcAA/UQRPcgBZoAwym4AE8gWdHOo/Oi/O6bF1zVjMn4Aect08iWZA/</latexit>

Fig. 10: Width/Depth Histograms – Illustration of ResNet50,
FB, and concurrent architectures, which enable more concur-
rency and shorter inference latency.

251

Raw 2 Units 4 Units 8 Units

Raw 2 Units 4 Units 8 Units

Raw 2 Units 4 Units 8 Units

Raw 2 Units 4 Units 8 Units

Raw 2 Units 4 Units 8 Units

Fig. 11: Random Neural Network Distribution – This gives
5 examples of raw random generated neural networks, their
distributions on two, four and eight units.

V. EXAMPLE DEEP DIVE

A. Distribution

To distribute the generated networks according to the num-
ber of units, we first group node in the same sequential
path together to minimize the communication overhead. The
detailed algorithm of grouping can be found in §V-A5. After
the nodes in the graph are grouped together, we use heuristic-
based greedy algorithm §V-A6 to distribute all nodes to units.
The objective of the algorithm is to balance the workload.
To make the load balancing simple, we assume the final goal
is that each unit performs a similar amount of computations.
Ultimately, this process can be improved using various other
techniques that currently is out of the scope of this paper.
Here, we provide an example of our process, which starts from
network generation to workload distribution.

1) Network Generation: Figure 11 demonstrates a example
of raw random neural network generated. This network is later
fed into a grouping and distribution algorithm to decide which
unit runs which nodes.

2) Distribution to 2,4 and 8 Units: Figure 11 shows
network distribution on 2,4 and 8 units. The coloring marks

2 3 4 5 6 7 8
Number of Unit

0.6

0.7

0.8

0.9

1.0

Lo
ad

 B
al

an
ci

ng
 Q

ua
lit

y
(N

or
m

al
iz

ed
 E

nt
ro

py
)

50%
1% - 99%
25% - 75%

Fig. 12: Load Balance Quality – The load balance quality
analysis on two, four, six and eight units compared to the
normalized Shannon entropy value.

the node is distributed on which unit. Because all units need to
run the computations of the first node, we leave it as a common
node (this could be just a scatter operation). In addition, for the
last node, an extra unit is needed to merge all results together,
so we mark that unit as black (this could be just a gather
operation).

3) Load Balancing: From the graphs, we observe that the
current grouping and distribution algorithm does well load
balancing under the scenario with a small number of units. The
quality of load balancing affects the final inference latency,
because the final results may slow down due to a bottleneck
node, which happens when unbalanced loads exist. We conduct
a load balance quality study as well as shown in Figure 12.
We use normalized Shannon entropy value to indicate the load
balancing quality (the higher the number represents the load
is more balanced, and 1 means the load is perfectly balanced
across distribution units). In the Figure 12, we showcase the
median, 25% − 75% percentile, and 1% − 99% percentile
load balancing qualities. We observe that as the number of
distribution units increases, the overall load balancing quality
downgrades, and the variation of quality increases. We aim to
develop distribution algorithms with higher quality; however,
currently, our aim in this paper is to show that parallel
inference computations of a single request is a viable option
and should be studied more.

4) Performance Scaling: As the final step, we also conduct
a study on performance scaling. We use a total of 10 AWS
t2.micro EC2 instances for performance evaluation. Each
instance is equipped with only 1 vCPU and 1 GB memory.
The specification are chosen to emulate edge units with limited
compute and memory that have a higher computational cost
(remember that constants in the Equation 4 give higher priority
to communication). As shown in Figure 13, the inference
latency improves when the system has more distribution units.
However, The latency stops to decrease as the number of
distribution units becomes 8, because the workload is not well
balanced on each unit, as shown in our load balancing study. In
this example, the bottleneck unit in the system causes longer
latency for the entire system.

252

2 Units 4 Units 8 Units

Fig. 13: Performance Scaling – the random neural network latency on two, four, and eight distribution units.

5) Node Grouping: The below code snippet is used to
group node in a graph. The computation graph will be later
used tp distribute the computations across the units in a
granularity of a group.

def grouping(dag):
group = dict()

first assign the node group to its self
for node in dag.nodes:

group[node] = node

create a undirected graph for grouping
ug = nx.Graph()
for edge in dag.edges:

src, dst = edge
ug.add_edge(src, dst)

use dfs to grouping
def dfs(group_id, group, node, ug, visited):

if node in visited or node == -1 or node ==
0:↪→

return
visited.add(node)
group[node] = group_id
for n in ug.neighbors(node):

dfs(group_id, group, n, ug, visited)

visited = set([])
for n in ug.nodes:

dfs(n, group, n, ug, visited)

collect grouping
groups = dict()
for n, group_id in group.items():

if group_id in groups:
groups[group_id].append(n)

else:
groups[group_id] = [n]

return groups

6) Load Balancing Work Distribution: The below code
snippet is used to distribute the work on each unit in the gran-
ularity of the nodes group. To make the algorithm simple, we
assume each node performs a similar amount of computation,
so the workload of a group is equal to the cardinality of the
group (i.e., number of nodes in a group).

def assign_workload(groups, n):
push jobs and units into queue
job, unit = [], []
for group_id, group in groups.items():

hq.heappush(job, (-len(group), group_id))
for i in range(n - 1):

hq.heappush(unit, (0, i))

assign workload
assignment = [[] for _ in range(n - 1)]
while job:

job_load, job_id = hq.heappop(job)
job_load = -job_load
if job_id == 0 or job_id == -1:

continue
unit_load, unit_id = hq.heappop(unit)
hq.heappush(unit, (unit_load + job_load,

unit_id))↪→

assignment[unit_id] += groups[job_id]
assignment += [[-1]]

return assignment

VI. CONCLUSION

In this work, we proposed concurrent architectures that
break the single-chain dependency, a common bias in modern
architecture designs. We showed that these architectures are
concurrent and have more distribution opportunities for reduc-
ing the inference time while achieving competitive accuracy.
Since we discover that previous NAS studies were implicitly
biased in creating a sequential model, we introduced a new
generator that naturally creates concurrent architectures. To
quantitatively compare concurrent architectures, we proposed
the concurrency score that encapsulates critical metrics in
distribution.

REFERENCES

[1] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[2] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 8697–
8710.

[3] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 4780–4789.

[4] R. Hadidi, J. Cao, Y. Xie, B. Asgari, T. Krishna, and H. Kim,
“Characterizing the deployment of deep neural networks on commercial
edge devices,” in 2019 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2019, pp. 35–48.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in 26th Annual Conference
on Neural Information Processing Systems (NIPS). ACM, 2012, pp.
1097–1105.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations. ACM, 2015.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

253

[8] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, et al., “Applied machine learning
at facebook: A datacenter infrastructure perspective,” in 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2018, pp. 620–629.

[9] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
in 4th International Conference on Learning Representations. ACM,
2016.

[10] B. Asgari, R. Hadidi, H. Kim, and S. Yalamanchili, “Lodestar: Creating
locally-dense cnns for efficient inference on systolic arrays,” in Proceed-
ings of the 56th Annual Design Automation Conference 2019. ACM,
2019, p. 233.

[11] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural
networks on cpus,” in Proceeding Deep Learning and Unsupervised
Feature Learning NIPS Workshop, vol. 1. ACM, 2011, p. 4.

[12] B. Asgari, R. Hadidi, J. Dierberger, C. Steinichen, A. Marfatia, and
H. Kim, “Copernicus: Characterizing the performance implications of
compression formats used in sparse workloads,” in 2021 IEEE Interna-
tional Symposium on Workload Characterization (IISWC). IEEE, 2021,
pp. 1–12.

[13] B. Asgari, R. Hadidi, and H. Kim, “Ascella: Accelerating sparse
computation by enabling stream accesses to memory,” in Proceedings
of Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2020, pp. 318–321.

[14] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Towards collaborative
inferencing of deep neural networks on internet of things devices,” IEEE
Internet of Things Journal, 2020.

[15] R. Hadidi, J. Cao, M. Woodward, M. S. Ryoo, and H. Kim, “Musical
chair: Efficient real-time recognition using collaborative iot devices,”
arXiv preprint arXiv:1802.02138, 2018.

[16] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Distributed perception by
collaborative robots,” IEEE Robotics and Automation Letters (RA-L),
Invited to IEEE/RSJ International Conference on Intelligent Robots and
Systems 2018 (IROS), vol. 3, no. 4, pp. 3709–3716, Oct 2018.

[17] S. Xie, A. Kirillov, R. Girshick, and K. He, “Exploring randomly wired
neural networks for image recognition,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 1284–1293.

[18] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-based de-
composition for parallel sparse-matrix vector multiplication,” IEEE
Transactions on parallel and distributed systems, vol. 10, no. 7, pp.
673–693, 1999.

[19] T. Lengauer, Combinatorial algorithms for integrated circuit layout.
Springer Science & Business Media, 2012.

[20] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware par-
allelism,” in 44th International Symposium on Computer Architecture
(ISCA). IEEE, 2017, pp. 548–560.

[21] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” in Advances
in Neural Information Processing Systems (NIPS), 2017, pp. 2181–2191.

[22] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in neural information
processing systems, 2016, pp. 2074–2082.

[23] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep
convolutional neural networks,” ACM Journal on Emerging Technologies
in Computing Systems (JETC), vol. 13, no. 3, p. 32, 2017.

[24] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neu-
ral networks with low precision multiplication,” arXiv preprint
arXiv:1412.7024, 2014.

[25] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep
convolutional networks using vector quantization,” arXiv preprint
arXiv:1412.6115, 2014.

[26] U. Köster, T. Webb, X. Wang, M. Nassar, A. K. Bansal, W. Constable,
O. Elibol, S. Gray, S. Hall, L. Hornof, et al., “Flexpoint: An adaptive
numerical format for efficient training of deep neural networks,” in
Advances in Neural Information Processing Systems (NIPS), 2017, pp.
1742–1752.

[27] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of
deep convolutional networks,” in International Conference on Machine
Learning, 2016, pp. 2849–2858.

[28] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiv:1605.04711, 2016.

[29] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with

weights and activations constrained to +1 or- 1,” arXiv preprint
arXiv:1602.02830, 2016.

[30] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
ECCV’16. Springer, 2016, pp. 525–542.

[31] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le, et al., “Large scale distributed deep
networks,” in NIPS’12. ACM, 2012, pp. 1223–1231.

[32] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “Modnn: Local
distributed mobile computing system for deep neural network,” in 2017
Design, automation and Test in eurpe (Date). IEEE, 2017, pp. 1396–
1401.

[33] S. Teerapittayanon, B. McDanel, and H. Kung, “Distributed deep neural
networks over the cloud, the edge and end devices,” in 37th IEEE
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2017, pp. 328–339.

[34] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” in 22nd ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
ACM, 2017, pp. 615–629.

[35] J. Kim, Y. Park, G. Kim, and S. J. Hwang, “Splitnet: Learning to
semantically split deep networks for parameter reduction and model
parallelization,” in Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 2017, pp. 1866–1874.

[36] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 2016.

[37] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural
network architectures using reinforcement learning,” arXiv preprint
arXiv:1611.02167, 2016.

[38] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 19–34.

[39] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le, “Mnasnet:
Platform-Aware Neural Architecture Search for Mobile,” arXiv preprint
arXiv:1807.11626, 2018.

[40] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” arXiv preprint, 2016.

[41] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML’17.
ACM, 2015, pp. 448–456.

[42] P. Erdős and A. Rényi, “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[43] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-
works,” Reviews of modern physics, vol. 74, no. 1, p. 47, 2002.

[44] J. Kleinberg, “The small-world phenomenon: An algorithmic perspec-
tive,” Cornell University, Tech. Rep., 1999.

[45] D. J. Watts, “Networks, dynamics, and the small-world phenomenon,”
American Journal of sociology, vol. 105, no. 2, pp. 493–527, 1999.

[46] M. E. Newman and D. J. Watts, “Renormalization group analysis of the
small-world network model,” Physics Letters A, vol. 263, no. 4-6, pp.
341–346, 1999.

[47] B. Hendrickson and T. G. Kolda, “Graph partitioning models for parallel
computing,” Parallel computing, vol. 26, no. 12, pp. 1519–1534, 2000.

[48] Wikipedia, “Hypergraph,” https://en.wikipedia.org/wiki/Hypergraph,
2019, [Online; accessed 12/11/19].

[49] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: applications in vlsi domain,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 7, no. 1, pp. 69–79,
1999.

[50] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute for
advanced research).”

[51] M.-E. Nilsback and A. Zisserman, “Automated flower classification over
a large number of classes,” in Proc. of ICVGIP, 2008.

[52] M. Wistuba, A. Rawat, and T. Pedapati, “A survey on neural architecture
search,” arXiv preprint arXiv:1905.01392, 2019.

[53] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[54] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017, https://pytorch.org.

254

https://en.wikipedia.org/wiki/Hypergraph
https://pytorch.org

