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Artificial
Intelligence

GatesNotes ...

A NEW ERA

The Age of Al has begun

Artificial intelligence is as revolutionary as mobile phones and the Internet.

By Bill Gates | March 21, 2023 « 14 minute read
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The Challenge

DNNSs are increasingly deeper and wider models with
higher computational demands

4 )

Training is Hard

Training GPT-3 on
3584x H100s would take 46h*

J

* Nvidia, NVIDIA H100 GPUs Set Standard for Generative Al in Debut MLPerf Benchmark, 27 Jun. 2023



The Challenge

DNNSs are increasingly deeper and wider models with
higher computational demands

4 o Y B
Training is Hard Fast Inference is

Training GPT-3 on Even Harder
@84x H100s would take 469\ W,

Requiring optimizations at various levels of HW-SW and
next-level of efficient production toolsets

* Nvidia, NVIDIA H100 GPUs Set Standard for Generative Al in Debut MLPerf Benchmark, 27 Jun. 2023



Speeding up Inference

Several techniques are employed for a faster inference:

 Reducing parameter size
 Model compression (pruning)
* Post-Training Quantization (PTQ)
 (Quantization-aware training (QAT)

* Exploiting parallelism in computation

 Happens at several levels with several
assumptions and end goals



Parallelizing Computations

Inside Model

Model Parallelism
Layer Scheduling
Per Layer

Per Tensor

Per Operation

Outside Model

Multiple Models
Data Parallelism
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Parallelizing Computations

Inside Model

Model Parallelism
Layer Scheduling
Per Layer

Per Tensor

Per Operation

Model Itself!

mo Explicit Parallelisrh

Blackhole of

ML Models

\_ /

Outside Model

Multiple Models
Data Parallelism

Current approaches in reducing the inference latency
are always applied after a model architecture is defined
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Model Parallelism

Model parallelism does not change the model
- Synchronization: Difficult to distribute
- Several Connections: High communication overhead
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Model Parallelism

Model parallelism does not change the model
- Synchronization: Difficult to distribute
- Several Connections: High communication overhead
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Model Parallelism

Model parallelism does not change the model
- Synchronization: Difficult to distribute
- Several Connections: High communication overhead

() Input/Output @ Convolution @ Maxpool () Flatten @Fully Connected
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Single-Chain Data Dependency

. ] . o Single-Chain
The main performance barrier in model Dependency
parallelism is single-chain dependency ;%

Cannot efficiently extend concurrency and
distribution beyond current explicit
parallelism exposed within intra-layer
computations

ResNet50

16



Single-Chain Data Dependency

We discover that this bias also exist in

o Single-Chain

 well-known architectures and,

* neural architecture search (NAS)
studies

For instance, RandWire, a NAS study trying
to search all possible models, has also this
single-chain dependency

* Xie et al. "Exploring randomly wired neural networks for image recognition." ICCV’'19
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Our Solution

In this paper we search for models efficient for
distribution, while providing a good accuracy!

o Single-Chain il Parallelizable o Single-Chain il Parallelizable
Dependency x Low Accuracy Dependency ~ Good Accurcay

%?

1.

This Work

ResNet50

" Hadidi et al. “LCP: A Low-Communication Parallelization Method for Fast Neural Network Inference in Image Recognition.” Accepted, CSCE 2023
2 Xie et al. "Exploring randomly wired neural networks for image recognition." ICCV'19
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Searching for a Model

Formulating as neural architecture search (NAS) problem
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Searching for a Model

Formulating as neural architecture search (NAS) problem

Generate Random
Graph
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Searching for a Model

Formulating as neural architecture search (NAS) problem

Generate Random
Graph

Evaluate
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Searching for a Model

Formulating as neural architecture search (NAS) problem

[What generator to use? ]

Generate Random
Graph

Evaluate
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Searching for a Model

Formulating as neural architecture search (NAS) problem

[What generator to use? ]

Generate Random
Graph

Evaluate

But parallelization speedup depends on
several factors...

Communication latency,

Number of devices, ...

Evaluation:
- Accuracy
- Parallelization
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Searching for a Model

Formulating as neural architecture search (NAS) problem

[What generator to use? ]

How to use evaluation
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Evaluate
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Searching for a Model

Formulating as neural architecture search (NAS) problem

[What generator to use? ]

How to use evaluation
to direct generators?

Generate Random

N\ Hypergraph /

Evaluate

But parallelization speedup depends on
several factors...

Communication latency,

Number of devices

L ) e P

Evaluation:
- Accuracy
- Parallelization




Hypergraph Theory

* Each edge can join any number
of vertices
Better to represent communication

26



Hypergraph Theory

* Each edge can join any number
of vertices w@

Better to represent communication

.V7

* Hypergraph partitioning

To find a load balanced partitioning, with minimum
communication overhead on n processors

Common in data centers
Solve with METIS or PaToH [catalyurek et al.]

Devine, K. D., Boman, E. G., Heaphy, R. T., Bisseling, R. H., & Catalyurek, U. V. (2006,
April). Parallel hypergraph partitioning for scientific computing. In Proceedings 20th
IEEE International Parallel & Distributed Processing Symposium (pp. 10-pp). IEEE.

© Wikipedia
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Searching for a Model

Formulating as neural architecture search (NAS) problem

What generator to use?

How to use evaluation
to direct generators?

Generate Random
Graph

l Evaluate

But parallelization speedup depends on
several factors...

Communication latency,

Number of devices, ...

Evaluation:
- Accuracy
- Parallelization
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Graph Generators

Use random graph generators to create models
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Graph Generators

Use random graph generators to create models

(L
N

VAN AN AN AN AN AYs:
Erdds-Rényi (ER) Barabasi-Albert (BA) Watts-Strogatz (WS)

' Xie et al. "Exploring randomly wired neural networks for image recognition." ICCV’'19
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Graph Generators

Use random graph generators to create models

(7
\XA -
WA NN7A N7 A NN AN AN A =y N
NNV AV AVAYS A

Barabasi-Albert (BA) Watts-Strogatz (WS)
Not easy to parallelize Not easy to parallelize Not load balanced

' Xie et al. "Exploring randomly wired neural networks for image recognition." ICCV’'19
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Graph Generators

Use random graph generators to create models

(L
N

0“. e e ) 0. {2 R
NSRS
Erd6s-Rényi (ER) Barabasi-Albert (BA) Watts-Strogatz (WS)
Not easy to parallelize Not easy to parallelize Not load balanced

(poposed)

' Xie et al. "Exploring randomly wired neural networks for image recognition." ICCV’'19
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Searching for a Model

Formulating as neural architecture search (NAS) problem

[What generator to use? J

How to use evaluation
to drive generators?

Generate Random
Graph

Evaluate

But parallelization speedup depends on
several factors...
Communication latency

Evaluation:
- Accuracy
- Parallelization

Number of devices, ...
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Parallelization Score

Partitioning Analyzing
Hypergraph Paths
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Parallelization Score
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Parallelization Score
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Parallelization Score
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Parallelization Score
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Parallelization Score
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Width vs. Depth Graphs

Width vs. depth of a model represents how well parallelizable a
model is beyond the computations within a single layer
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B Best Prior Work

M This Work 4 Significant Accuracy Loss
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Parallelization Score Results

Results on small datasets
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Parallelization Score Results
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Parallelization Score Results

Results on small datasets
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Parallelization Score Results

Results on small datasets

87

86 -

Accuracy
00 00 (o) 00
N W B 6,

(o0}
=

Parallelization Score

——
This Work * Prior Lower Score =
Work More Parallelizable
* O Architectures
Sk ||V O
¢ ® o
*, v * ParalleINets
14 vy ® ER
LCP YV BA
1 “ Models WS
Q ¢ wr
1.0 1.5 20 25 3.0 35 4.0 4.5

46



Please check the paper for
more details on

Distribution

Scaling blocks & strategy
Example deep dive

Code

Parallelization score

Results on speedup and
communication

Reducing Inference Latency with Concurrent
Architectures for Image Recognition at Edge

Ramyad Hadidi®" Jiashen Cao®
Rain Al Georgia Tech
ramyad @rain.ai jiashenc @gatech.edu

Abstract—Satisfying the high computation demand of modern
deep learning architectures is challenging for achieving low infer-
ence latency. The current approaches in decreasing latency only
increase parallelism within a layer. This is because architectures
typically capture a single-chain dependency pattern that prevents
efficient distribution with a higher concurrency (i.e., simultaneous
execution of one inference among devices). Such single-chain
dependencies are so widespread that even implicitly biases recent
neural architecture search (NAS) studies. In this visionary paper,
we draw attention to an entirely new space of NAS that re-
laxes the single-chain dependency to provide higher concurrency
and distribution opportunities. To quantitatively compare these
architectures, we propose a score that encapsulates crucial
metrics such as communication, concurrency, and load balancing.
Additionally, we propose a new generator and transformation
block that consistently deliver superior architectures compared to
current state-of-the-art methods. Finally, our preliminary results
show that these new architectures reduce the inference latency
and deserve more attention.

Index Terms—Edge Al, Neural Architecture Search, Dis-
tributed and Collaborative Edge Computing, IoT, Collaborative
Edge & Robotics

I. INTRODUCTION & MOTIVATION

Increasingly deeper and wider convolution/deep neural net-
works (CNN/DNN) [1]-[3] with higher computation demands
are continuously attaining higher accuracies. Nevertheless,
the high computation and memory demands of these DNNs
hinder achieving low inference latency [4]. Although current
platforms exploit parallelism, we discover that, since most
architectures capture a single-chain dependency pattern [5]—
[71, shown in Figures 1a & b, we cannot efficiently extend con-
currency and distribution beyond current explicit parallelism
exposed within intra-layer computations (i.e., matrix-matrix
multiplications) to reduce the latency of an inference. In other
words, distribution and concurrency, if any, are implemented
at data level [8], which only increases the throughput.

The status quo approaches in reducing the inference latency
are always applied after an architecture is defined (e.g.,
reducing parameters with weight pruning [9], [10] or reducing
computation with quantization or compression [11]-[13]).
Additionally, for extremely large architectures, limited model

This work was partially supported by the NSF grant number 2103951
and Institute of Information and Communications Technology Planning and
Evaluation grant funded by the Korea government (No. 2021-0-00766).

SEqual contribution

“This work was done when the author was affiliated with Georgia Tech.

Stony Brook University and Google
mryoo@cs.stonybrook.edu

Michael S. Ryoo Hyesoon Kim

Georgia Tech
hyesoon.kim @ gatech.edu

@ Single-Chain Dependency

 Not Concurrent
Hard To

Distribute

Il Concurrent  egpe Easily Distributed

(a) ResNet50 (b) Prior Work (c) This work

(with DP generator)
Fig. 1: Sampled Architectures Overview — (a) & (b) Limited
concurrency and distribution due to single-chain dependency.
(c) Improved concurrent architecture.

parallelism is applied on final layers (i.e., large fully-connected
layers that do not fit in the memory of edge devices [14]-[16]).
However, since model-parallelism methods do not change
the architecture, distributing all layers with such methods
adds several synchronization/merging points, incurring high
communication overheads (Figure la & b). We discover that
the single-chain inter-layer dependency pattern, common in
all the well-known architectures and even in state-of-the-art
neural architecture search (NAS) studies [17], prevents the
efficient model distribution for reducing inference latency.
This visionary paper addresses the single-chain data de-
pendency in current architecture designs and endeavors to
inspire discussion for new concurrent architectures for at-
edge distribution. To do so, first, we analyze architectures
generated by recent unbiased NAS studies [17] and discover
that scaling/staging blocks implicitly enforce dependencies.
Then, we generate new architectures with prior and our new
distance-based network generators using our new probabilistic
scaling block. Then, for quantitatively comparing generated ar-
chitectures, we propose a concurrency score that encapsulates
important metrics such as communication, load balancing,
and overlapped computations, by reformulating the problem
as a hypergraph partitioning problem [18], [19]. Based on
the scores and experiments, our generated architectures have
higher concurrency and are more efficient for distribution

47
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Intelligence Requires Computation

Intelligent edge devices

For instance, robots need to sense, manipulate, and
reason about their environment, all of which imposes
heavy computations

I _Eﬁe_ctg -=-o Reasoning

7 S &
’ x  Planning

Sensing R (..1
=00
. Manipulation EJ; E_I;

Agent
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Heavy Computations

Heavy computations are usually in the form of deep
neural networks (DNNs) inference

- Allowing to function in diverse situations

- Requiring to perform inference computation
locally in the edge on the device:

l.e., in-the-edge inference

50



In-the-Edge Inference

* In-the-edge applications
Intelligence in self-driving cars, smart homes/cities
 Sometimes is the only option
No Internet connectivity
Intermittent connectivity
* Privacy preserving
Straightforward way to preserve privacy and security
Personalization
* Even faster
No cost associated with communication latency
e Sometimes cost(S) efficient

51



In-the-Edge Inference (chalienge)

Edge devices cannot handle such heavy computations

due to lack of resources

Newer DNNs are heavier for better understanding

70
60
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20
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FEHParams =o=#MACs

Image Recognition

Video Analytics/ Translation

100

#Parameters (1e6x)
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Model vs. Data Parallelism

- Data Parallelism — Throughput Oriented
Requires several input
High computation and memory footprints per device
Does not break down heavy layers
No adjustable work per device

- Model Parallelism — Latency Oriented
Requires one input
Exploits parallelism within a layer
Breaks down heavy layers
Adjustable work per device

53



Data & Model Parallelism

i =9t

Data Parallelism Model Parallelism

4 )
Data parallelism provides the next input to the

. next devices in a hetwork y

( ° ° ° \

Model parallelism splits layers over multiple
devices, working on the same input




Uniform Channels Do Not Scale

TABLE I. Accuracy of Uniform Channels — The mean
accuracy comparison between sampled group architectures
with uniform channel vs. handcrafted without any advanced
optimizations. (baselines Cifar-10 and Flower-102 are vanilla
CifarNet and ResNet-50, respectively).

DNNs with Uniform

Dataset Baseline Channels

Cifar-10 32x32 80.70 81.13
Flower-102 224 x 224 87.80 74.73 (Fails to Scale!)
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Staging (1)

 Greedy-based Staging:
* We set an upper limit for channel size.

* Aslong as channel sizes have not reached the
upper bound, we conduct staging (i.e., down-
sample the input & upsample the channel)

 However, this design raises an issue that
intermediate outputs are quickly squeezed
through the maxpooling layer, which discards
important features.

* This approach hurts the accuracy to some
extent.
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Staging (2)

* Probabilistic-based staging

* |n this design, although the channel size may have not
reached the limit, staging is done with a fixed
probability of 0.5 to avoid discarding features too

quickly.

TABLE II: Average Accuracy — Comparison of randomly
sampled group of generated architectures with different staging
choices (trained on Flower-102).

Staging/Samples A B C Overall Mean
Greedy 82.30 81.32 82.42 82.01
Probabilistic 82.42 86.69 84.62 84.58

TABLE III: Average Accuracy/Parameters Ratio — Compari-
son of randomly sampled generated architectures with different
staging choices (trained Flower-102).

Staging/Samples A B C Overall Mean
Greedy 2.31 2.27 2.63 2.40
Probabilistic 3.00 3.28 3.58 3.29
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Width of Concurrent Computations at Same Depth

n=3 n=3 n=3 n =3
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TABLE V: Concurrent Architectures on Cifar-10 — Overall
sampled metrics.

Mean Best Mean Best

Acc. Acc. Acc./Param. Acc./Param.
CifarNet 80.70 80.70 5.38 5.38
ER 81.33 81.81 4.94 5.03
BA 80.29 81.66 4.81 4.92
WS 79.89 81.45 4.75 4.84
DP 80.87 82.47 4.81 4.90

TABLE VI: Concurrent Architects on Flower-102 — Overall
sampled metrics.

Mean Best Mean Best

Acc. Acc. Acc./Param. Acc./Param.
ResNet-50 87.80 87.80 3.43 3.43
ER 84.88 86.20 2.11 2.43
BA 82.91 84.62 2.41 291
WS 81.46 86.57 3.17 3.10

DP 84.66 86.69 3.19 3.28


















