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Internet of Things Devices loT: Raw Data & Processing loT: DNN-based Processing
» Internet of Things (loT) devices » loT is gaining ground with the widespread of » With deep neural networks (DNNs):
Have access to an abundance of raw data Embedded processors With DNNs loTs can
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» But, DNNs are resource hungry
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Approach 1: Offload to Cloud Why Cloud is not Always a Solution Approach 2: loT Collaboration
» Send the request to cloud services » Unreliable connections to the cloud » Distribute computations -~ A
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loT Collaboration Pros & Cons Challenges Impact: Unreliable Latencies Challenges Impact: Accuracy Drop
» Histogram of arrival times in 4-node system » Common to loose data parts due to

» Assuming DNN performance barrier is solved with

collaboration among loT devices performing AlexNet (model parallelism). é% _
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» Long Tail and Max Latency -> Straggler Problem » High Accuracy Drop
Computation of DNNs Computation Distribution of DNNs Coded Distributed Computing (CDC)
- » Methods distributing computation of a model* :
» Each layer’s computations can be represented as 5 o '?U o - » Designed for MapReduce workloads (2018)*
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‘ » Same can be applied on conv. layers* - .
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Using CDC for Robustness How to Distribute CDC and Recover? Straggler Mitigation & Failure Coverage
» Add column-wise summation of the weights: » Add column-wise summation of the weights: Do not need to wait for all g 'é % 7
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» The new weights are constant, so done in offline You also needs the weights, that £Ee £ r @um @um e Oupu Selitng for s nodes Better Coverage versus with 2-modular redundancy (2MR):

Two Failures Tolerance

you would not have in the final node

w11 w12 ’ ai ~—4—(CDC+2MR =& =2MR —#—CDC +2MR =& =2MR —4—CDC + 2MR =& =2MR
, ay Multiple out/device: Just t ight matri 10 10 100
war  was | x || = | as ultiple out/device: Just create a new weight matrix
.cde . cde az cde x 80 80 80
Wi W:o a ) . @ 60 60 60
w11+w(%+”l wlg-i-w(%ﬂ)z Wlk‘*'“’(%ﬂ)k o
w21+w(%+2)1 w22+w(%+2)2 w2k+w(%+2)k § 40 40 40
' (@)
. . © 20 20 20
» Distribute outputs among nodes
. ) T . ) 0 0 0
Thus, applicable only to output-splitting methods W FWml WmptWme e Wmgtbwe |, o2 3 45 1 2 3 4 5 6 7 1 23456 7 809
L 2 2 2 E TXk #Additional devices for robustness #Additional devices for robustness #Additional devices for robustness

# comparch




