
LCP: A Low-Communication Parallelization
Method for Fast Neural Network Inference for IoT

Ramyad Hadidi∗‖, Bahar Asgari‡‖ Jiashen Cao†, Younmin Bae†, Da Eun Shim†, Hyojong Kim†,
Sung-Kyu Lim†, Michael S. Ryoo§, Hyesoon Kim†

∗Rain AI, †Georgia Tech, ‡University of Maryland College Park, §Google & Stony Brook University
‖This work was done when authors were affiliated with Georgia Tech.

Abstract—Deep neural networks (DNNs) have stimulated re-
search in diverse edge applications including robotics and
Internet-of-Things (IoT) devices. However, IoT-based DNN infer-
ence poses significant challenges due to resource constraints. Fur-
ther, as communication is costly, taking advantage of other avail-
able IoT devices by using data- or model-parallelism methods
is not an effective solution. We introduce a low-communication
parallelization (LCP) method to minimize communication over-
head in distributed IoT systems. LCP models consist of multi-
ple, largely-independent, narrow branches, providing enhanced
distribution and parallelization opportunities while reducing
memory and computational requirements. Implemented on AWS
instances, Raspberry Pis, and PYNQ boards, as well as a
customized 16mW 0.107mm2 ASIC @7nm chip, LCP models
yield maximum and average speedups of 56x and 7x, compared
to original models, which could be improved by incorporating
common optimizations such as pruning and quantization.

Keywords– IoT, DNN, Inference, Parallel, Distributed, FPGA

I. INTRODUCTION & MOTIVATION

Deep neural networks (DNNs) have revolutionized many fields

including Internet-of-things (IoT) systems. Yet, executing

computationally heavy DNN inference locally in isolated net-

works (e.g., smart homes, drones [1]) remains a challenge [2].

In these cases, acceptable accuracy, standalone operation,

and unified ownership are key. The conventional solution to

heavy DNN inference computations is cloud-based offloading.

However, this approach has limitations: unavailability (e.g.,
no Internet access), reliance on variable network latency, and

scalability issues. Also, privacy concerns and personalization

push for local inference. However, local inference demands

high resources, clashing with the energy and computational

constraints in IoT devices.

The Current Approach & Key Challenge: Existing methods

enable local DNN inference by distributing computations

among idle IoT devices using data- or model-parallelism. Data

parallelism improves throughput by duplicating the model on

each device for separate inferences, but requires concurrent

inputs. Model parallelism distributes the model across devices

for the same inference, but is limited by communication

overhead and inter-layer data dependencies. An ideal method

for IoT devices should minimize communication overhead

and memory and computation requirements per node, but no

existing distribution methods achieve all these goals.

Our Solution: To address the aforementioned challenge, we

propose a low-communication parallelization (LCP) method

that enables the following: (i) Reduces Communication: LCP

models replace a wide, deep model with several narrow ones,

reducing communication requirements as they only communi-

cate for input and pre-final activations (see Table I). (ii) Lowers
Compute & Memory Footprints: Fewer connections in LCP

TABLE I
METHODS FOR DISTRIBUTING INFERENCE COMPUTATIONS.

Data Model
Parallelism Parallelism Target LCP

Memory
Per Device DNN 1

n DNN 1
n DNN ≤ 1

n DNN

Communication Intermediates
Per Inference IN/OUT +IN/OUT

IN/OUT ≈ IN/OUT

Computation
Per Device DNN 1

n DNN 1
n DNN ≤ 1

n DNN

DNN: Metrics associated with the entire model; n: Number of devices.

models lead to fewer parameters and lower computational de-

mands compared to model-parallelism counterparts (Table I).

(iii) Enables Inter-Layer Parallelism: The independent narrow

branches in LCP models allow for inter-layer parallelism,

unlike model parallelism which is restricted by inter-layer

dependencies. (iv) Recovers Accuracy Without Extra Parame-
ters: Any potential accuracy loss due to model splitting can

be recovered by slightly increasing the branch size, but this

still results in fewer overall parameters due to the reduction in

unnecessary communication. LCP operates in conjunction with

existing techniques like weight pruning and quantization that

decrease model computation demands. LCP facilitates model

distribution and parallelism in distributed systems, while other

techniques implement accuracy/performance tradeoffs on indi-

vidual nodes. These approaches can be applied to each branch

in our method (see §IV-C), meaning LCP complements them.

Experiments Overview: (1) We create and evaluate LCP

models using image-recognition DNNs on various datasets

(MNIST, CIFAR10/100, Flower102, and ImageNet) including

all MLPerf image-recognition models, resulting in a total of

53 training evaluations. (2) We implement our method on three

different distributed systems: a network of up to 10 Raspberry

Pis (RPis), two PYNQ boards, and up to eight AWS instances,

using RPis due to their widespread use in IoT applications. (3)
We assess the performance of LCP on customized hardware. In

addition to optimizing models based on hardware constraints,

we modify the TPU architecture to be latency-optimized,

suitable for IoT applications, and implement it on a Xilinx

FPGA. (4) We evaluate the area and power efficiency of our

tailored hardware using ASAP 7 nm for integration into IoT.

Contributions: Our contributions are as follows:

• We propose the first DNN parallelization to reduce the

communication overhead for distributed inference for IoT.

• We generate LCP models, with inter-layer parallelism for

fast inference at small memory and computation footprints.

• We investigate the impact of hardware/software co-design

on inference performance, by tailoring the hardware of

TPU for optimizing single-batch inference latency, and

implement it on a small FPGA and as a tiny 0.107mm2

low-power chip consuming only 16mW.

1670

2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE)

979-8-3503-2759-5/23/$31.00 ©2023 IEEE
DOI 10.1109/CSCE60160.2023.00274

�
���
���
���
���

�
��
��
��
��

	
�

�

��
���

�

��

��

�
��

���

�

��

�

���
��

�

��

��

�

�

��

��

��

��

!
��"
�#$

�
��

��
�

�"
"%
	
�

�
&'

	'
�
�

(

���
(�
�

(

���
	��

%

)*
��
�+

�

�

�#,
�

��
-

).
�

#'
!

��
��"

��
#,�

�
�- ������� ��	
�

��

�

������������	�	��
	�������
��	���������
��	��

Fig. 1. DNNs #MAC operations/inference and parameters.

II. CHALLENGES

We first explain inevitable resource limitation for executing

DNNs causing the single device Pareto frontier. Then, we

summarize current distribution methods and their limitations,

causing straggler problem and limited scope of parallelism.

Resource Limitation & Pareto Frontier: DNN mod-

els comprise numerous layers, with custom weights learned

during back-propagation training. In inference, feed-forward

computations use these static learned parameters on batched

inputs. The most resource-demanding layers, usually fully-

connected and convolution layers, possess a significant amount

of multiply-accumulate operations and parameter sizes as

shown in Figure 1. More recent models incorporate more

parameters and perform more computations for improved

feature understanding over their predecessors. In short, this
trend of modern models will inevitably surpass the capabilities
of any resource-constrained device.

IoT platforms face resource constraints. Figure 2 shows the

latency per image for state-of-the-art image recognition mod-

els on RPi, despite optimizations like pruning, quantization,

low-precision inference, and handcrafted models, optimized

for ARMv8 architectures using the ELL tool. The Pareto

frontier sets the upper limit of single-device performance.

High-accuracy models typically exhibit latencies above 400ms,

and in most cases, it exceeds 100ms. This situation worsens

with larger, more complex DNNs beyond image-recognition,

indicating the challenges in executing such computations on

a single IoT device. In other words, even after applying all
optimization techniques for DNNs, the single device Pareto
frontier limits the widespread applicability of DNNs in several
IoT domains necessitating distribution and parallelization.
Current Distribution Methods: (1) Data parallelism (Fig-

ure 3a) applies to independent inputs but does not serve IoT

environments due to its latency, throughput focus, and un-

changed per-node computation and memory footprint (Table I).

(2) Model-parallelism (Figure 3b) divides inference computa-

tions for the same request but suffers from communication

��
��
��
��
��
��

� 	�� ��� ��� ���
�����
��
�#
��
��
	

��

##�

��
��
�/
��

/�

�
�����#����#��	#
�
��#��#���0

������#��	�
�
��
���#�
�����

��������#	�
����

���#�������������#

��������
�������

��������#	�
����
���#��������#

����
�	
��

��������#	�
����
����#�������������#

��������

Fig. 2. Latency-Accuracy Pareto Frontier – Single device: Latency per image
on RPi3 for ILSVRC models with the optimized platform-specific compilation
ELL tool. Multiple devices: Breaking the single device Pareto frontier, but
with significant communication overhead.

(a) Data Parallelism (b) Model Parallelism

(c) Hierarchical — SplitNet (d) This Work — LCP

Fig. 3. Overview of distribution/parallelism methods.

overhead and single-chain dependency that limits parallelism

scope. Figure 4 presents a simple example for distributing

a fully connected (fc) layer, illustrating two extremes of

model parallelism: Input and output splitting. Although model
parallelism reduces the compute and memory footprint per
node; the single-chain dependency between consecutive layers
limits the parallelism scope within a single inference and
causes communication overhead. (3) SplitNet [3] (Figure 3c)

manually splits the model based on dataset semantics in inter-

mediate to final layers, leading to issues including imbalanced

workload and high communication overhead.

Communication Overhead & Limited Parallelism: Current

distribution methods suffer from high communication over-

head and limited parallelism due to single-chain dependency

between layers. This results in straggler problems, especially

in wireless IoT devices. For instance, Figure 5 shows latency

in a distributed system of six RPis executing AlexNet with

model parallelism. Average delay is approximately twice as

long as the bounded computing time. Figure 6a illustrates

the interconnections and communication overhead in VGG-S

with model parallelism. Despite compression techniques, the

number of connections remains unchanged.

The single-chain dependency between consecutive layers

limits the available parallelism that could be harvested by the

aforementioned methods. The limitation is that after the com-

putations of a single/few layer(s) are done, the intermediate

results must be merged before being forwarded to the next

layer. Such merging acts as a global barrier, which similar to

parallel programming, limits the gained performance speedup.

In summary, with parallel execution on multiple devices,
ideally, we could pass the frontier in Figure 2. However
current distribution methods are limited by the communication
overhead and the inherent inter-layer data dependency. The
next section proposes LCP models, which significantly reduce
communication and allow inter-layer parallelism.

Layer 1 Layer 2

Input

Output

Input Layer 2 Output Layer2

Output Splitting:

Input 1

Copy
Input 1

Part 1
Output 1

Part 2
Output 1

Layer 3
Input Splitting:

Input
Part1

Input
Part 2 Partial 2

Output 1

Partial 1
Output 1

Model Parallelism

Fig. 4. Model parallelism for a fully connected layer.

1671

 Arrival Time (ms)

Mean: 1019 ms
Stdev: 390.77 ms

Fig. 5. Histogram of prediction latencies on a six RPi system executing
AlexNet with model parallelism (§IV-B).

III. LCP FOR FAST INFERENCE

We propose the LCP method, which replaces a large model

with several narrow branches, communicating only for input

and pre-final activation (Figure 3d), as illustrated in Figure 6b

for a two-branch LCP model of VGG-S. This section de-

tails the LCP model design and its key low-communication

features, followed by a discussion on tailoring a systolic

architecture for IoT computing.

A. Tailoring Models

Design Procedure: Figure 7 describes the design procedure

of LCP models. We start by inputting the DNN model and

its per-layer memory and computation footprints. Similarly,

we input the specification of the hardware, such as memory

size, computation capability, and any overhead associated with

executing a DNN on our hardware. For instance, several

DNN frameworks have a memory overhead because of the

framework. The splitter procedure, described in Procedure 1,

in a while loop, splits the model, cuts the connection, and

measures the approximate footprints of each branch. The

DivisionFactor, a hyperparameter, defines the granularity of

division/splitting. Here, we assume the DivisionFactor of two,

but any number is viable. The loop exits when a single branch

is fitted on a device (both memory and computation wise). If

the number of devices is fewer than the number of branches,

the execution is still possible, but will be inefficient. Then,

we remove non-branch connections in a simple operation that

keeps only one connection per layer. The derived model from

the splitter is the split-only model. By training the split-only

model and testing it, we measure its accuracy. The split-only

models have fewer parameters and MAC operations than the

original models (Table II) in total. Hence, after distribution,

each branch has less computation and memory footprint than

its model-parallelism version.

As a result of fewer number of parameters and removing

several connections, a slight accuracy drop in split-only LCP

models is expected. Depending on the accuracy requirement of

VGG-S
with

Model-Paralleism

Communication Overhead (partially or fully)

(a)

VGG-S Split
in Two

Execution

(b)

Node 1

Node 2

Final Node

Around Half of parameters
and MACs

Convolution Maxpool Fully ConnectedFlattenInput/Output

Fig. 6. VGG-S (a) model parallelism and (b) LCP versions.

Hardware
Specification

…
…

…

… … … ……

… …

Adder Tree

…
…

…

……… … … ……Sy
st

ol
ic

 A
rr

ay

Splitter

Desired
Accuracy?

Classification Layer Predictions

Te
st

 S
et

Testing

Yes

Split-Only
Model

Training

Tr
ai

ni
ng

 S

et

Hyper-
parameter
Tuning

Fa
tte

n
+

F%

Ea
ch

 B
ra

nc
h

Final
LCP
ModelSplit-Fattened

Model

No
Taskerror ≤ ε

Input
Model

e.g., Memory Size

Fig. 7. Design Procedure of LCP models.

the task, we either fatten each branch by F%, a hyperparame-

ter, or output the resulted model. We assumed a maximum

of 3% bound for Taskerror. Fattening each branch by F%
is done by increasing the number of channels and output

features of convolution and fully connected layers of the split-

only model, respectively. Note that theses new split-fattened
models are fattened within each branch. Thus, even with a

high fattening percentage, still they have fewer parameters and

MAC operations than the original model (see Table III). When

the accuracy is in the acceptable error range for our task,

Taskerror, we output the model architecture and its weights.

It is expected that with similar number of parameters after

fattening, LCP models achieve the same level of accuracy [4].

We showcase LCP models in §IV-A covering MLPerf.

Key Features of LCP Models: LCP models are designed

by considering their underlying computation domain and have

the following key features to address the challenges discussed

in §II: (1) LCP models only communicate for input and pre-

final activation. Therefore, they significantly reduce commu-

nication overhead in a distributed system. Additionally, the

low communication load per inference helps with the straggler

problem. This is in contrast to model parallelism, which

highly depends on communication among all the intermediate

layers; (2) LCP models split the size of a layer, so the total

parameter size and computation complexity of the model

are reduced. Therefore, they require fewer parameter sizes,

less computation complexity, and no communication between

the nodes for intermediate layers. These lower memory and

Procedure 1: LCP Splitter (in Figure 7)

Input : DNN: Layer configurations [0 : n]
DNNMem, DNNMAC: DNN memory and computational footprints
Divisionfactor: Division Factor for splitting
DevMem, DevMAC: Hardware specification

Output: DNN: Layer configurations [1 : n]
1 Split(DNN, DNNMem, DNNMAC, Divisionfactor, DevMem, DevMAC)
2 Memfit ← 0; MACMac ← 0;
3 while not Memfit and not MACMac do
4 Memfit ← DNNMem < DevMem
5 MACMac ← DNNMAC < DevMAC
6 for layer [0..n − 1] in DNN do
7 layer.width ← layer.width/ Divisionfactor
8 RemoveNonBranchConnections(DNN)

9 return <DNN>

1672

5-
La

ye
r

Pi
pe

lin
ed

LPDDR2
933Mb/s/pin

…
…

…

… … … ……

… …

length

Adder Tree

1

3

Memory

Width = 32

d

…
…

…

…… … … ……

…

sum row col

sum row col

sum row col

sum row col

… …

+1

+1

+1

row = i;

if i < length; i++;

row = 0;

i

<< 6

+

+

+

+

…

last?

… Po
ol

in
g

Ac
tiv

at
io

n

M
em

or
y

In
te

rfa
ce

4 5

Indexing Activation & Pooling

Sy
st

ol
ic

 A
rr

ay

(a)

x

i

data t

To register
of next cell

To adder
tree

To next
buffer

(Initialization)

2
Cell

R1

De
pt

h
=

64

(b)

295μm

365μm

6

Fig. 8. Details of Tailored Hardware for IoT: (a) Microarchitecture overview,
and (b) Layout of ASIC design at 7nm.

computation footprints allow IoT devices to efficiently operate

within their limited resources (e.g., no swap space activities

due to limited memory); (3) LCP models replace the original

wide model with several narrow independent branches. Since

the computations of branches are independent, in contrast to

the single-chain of dependency in the original model, the scope

of parallelism is not limited with each layer anymore. In other

words, LCP models go beyond intra-layer parallelism.

B. Tailoring Hardware

Our work also optimizes fast inference under resource con-

straints and costly communication, using a tailored hardware

microarchitecture for DNNs. Our microarchitecture, shown

in Figure 8a, resembles systolic arrays in TPU and can be

implemented on small FPGAs or tiny low-power chips (i.e.,

0.107 mm2 as shown in Figure 8b). We arrange systolic array

cells in a 32x64 array �, reducing connections by linking

only the first row to memory. Each cell of the first row is

only connected to one data stream line �. To optimize data

flow, we partition the streaming operand into blocks of width

32, and split the stationary operand into 32×64 blocks. These

blocks are then sequentially mapped to memory addresses.

Our design, connected to LPDDR2 memory, results in a peak

throughput of 217.6,GOPs/s. We implement three key modifi-

cations: (1) Adder Trees: We use adder trees instead of MAC-

based arrays, reducing latency from O(n) to O(log(n)) �. (2)

Simple Indexing Logic: Our data-driven model, with indexing

logic �, manages data flow and operation end signals. By

comparing the length and index (i), the end of the operations

in the current layer is detected. The end of the current layer

signals the start of activation and pooling functions for that

layer �. (3) Buffering Stationary Operands: To reduce latency

and easy context switching, we integrate a buffer � at each

cell for stationary operands.

IV. EXPERIMENTAL STUDIES

This section presents our experiments on generating LCP mod-

els and their deployment on RPi, TVM-enabled PYNQ boards,

and AWS instances. We also discuss FPGA implementation

for IoT and ASIC chip design evaluation. Details for each

experiment are provided at the start of their subsections.

A. Generating LCP Models

Training Specifications: We train all the models, including

the original model, from scratch to conduct a fair comparison

(normalization layers are included). The training is done with

an exponential learning rate with a decay factor of 0.94, initial

learning rate 1e−2, number of epoch per decay of two or

10, a dropout rate of 50%, and L2 regularization with weight

decay of 5e−4. We use ADAM optimizer with β1 = 0.9 and

β2 = 0.99. All biases are initialized to zeros and all weights

are initialized with a normal distribution of mean 0 and a

standard deviation of 4e−2. All of our models are trained until

the loss is flattened or least for 12 epochs. Test and accuracy

measurements are done on at least 10% of datasets that have

never been used in training to provide an unbiased evaluation

of the model. For LCP, the DivisionFactor, F , and ε, are 2%,

10%, and ≈3%, respectively.

Datasets: We use the following datasets: (1) MNIST, which

contains 70k grayscale handwritten 28x28 images in 10

classes; (2) CIFAR10, which contains 60k colored 32x32

images in 10 classes; (3) CIFAR100, which contains 60k

colored 32x32 images in 100 classes; (4) Flower102, which

contains 16,378 colored 224x224 images of flowers in 102

classes; and (5) ImageNet, which contains 1.33 M colored

224x224 images in 1000 classes.

Models: We use the representative model for each dataset,

LeNet, LeNet-FC, VGG-S, CifarNet, VGG16, AlexNetv2,

ResNet-18/50, and MobileNet. We cover all image-recognition

models in MLPerf. In total, for brevity, we only report 53

instances of training results to show LCP extensibility using

five datasets and nine models. Our additional results (not

reported) with ResNet-34, DenseNet, and DarkNet19 confirms

extendibility. Simple sequential DNNs serve as a basis to

confirm our method, while ResNets and MobileNet showcase

LCP with modern models.

Split-Only Models: For split-only models, we use

DivisionFactor of two, which results in models with two,

four, and eight branches. Except the width, defined as output

features in fully connected layers and the number of output

channels (i.e., filters) in convolution layers, the rest of the

parameters are similar to the original model as Splitter

Procedure 1 only touches widths. Table II lists the training

results. Figure 9a illustrates the accuracy difference of our

models, shown in Table II. As shown, the maximum accuracy

drop is around 5% for CifarNet. Note that this accuracy drop

occurs when we reduced the parameter size of our model

extensively (around 1/8). Figure 9b and c show reduction in

the number of parameters and computation compared with

the original DNN model; as seen, each split reduces both

by about splitfactor times. This is because each convolution

1673

TABLE II
RESULTS OF SPLIT-ONLY LCP MODELS.

Model Name Dataset Layers† Top-1 # # MAC
Accuracy Param Opr.

LeNet-FC* MNIST 3fc 97.95 266.6k 266.2k

LeNet MNIST 2fc-3c-2p 98.76 61.7k 61.5k
LeNet-split2 MNIST 3fc-6c-4p 98.86 31.5k 30.5k
LeNet-split4 MNIST 5fc-12c-8p 98.93 16.1k 16.0k
LeNet-split8 MNIST 9fc-24c-16p 98.81 8.8k 8.5k

CifarNet* Cifar10 2fc-2c-2p-2n-1d 80.72 797.97k 14.79M

CifarNet Cifar100 2fc-2c-2p-2n-1d 52.87 815.34k 14.81M
CifarNet-split2 Cifar100 5fc-4c-4p-4n-2d 51.22 410.48k 9.33M
CifarNet-split4 Cifar100 9fc-8c-8p-8n-4d 48.48 208.05k 6.59M
CifarNet-split8 Cifar100 17fc-16c-16p-16n-8d 47.98 106.85k 5.23M

VGG-S* Cifar100 3fc-5c-2p-1n-2d 50.33 76.15M 154.09M

VGG-S Flower102 3fc-5c-3p-1n-2d 88.14 60.79M 1.85G
VGG-S-split2 Flower102 5fc-10c-6p-2n-4d 89.31 30.50M 1.01G
VGG-S-split4 Flower102 9fc-20c-12p-4n-8d 87.55 15.26M 591.65M
VGG-S-split8 Flower102 17fc-40c-24p-8n-16d 85.66 7.64M 382.51M

ResNet-18 ImageNet 18c-2p-17n 70.68 11.69M 1.82G
ResNet-18-split2 ImageNet 35c-3p-34n 69.85 6.11M 0.98G
ResNet-18-split4 ImageNet 69c-5p-68n 68.07 3.32M 0.55G
ResNet-18-split8 ImageNet 137c-9p-136n 66.76 1.93M 0.34G

† fc: fully-connected, c: convolution, p: pooling, n: normalization, and d: dropout.
* Detailed results are removed for brevity, refer to Figure 9. The results follows the same trend.

and fully connected layer in the split version create fewer

outputs; therefore, the next layer requires fewer parameters.

In the next section, we restore the accuracy of LCP models

with split-fattened models.

Split-Fattened Models Accuracy is a defining factor in sev-

eral applications. Thus, we provide a remedy to restore the

accuracy of split-only models. By adding more parameters to

each branch, we aim to create larger layers in the split-only

models. To do so, for each layer (but classification layer), in

every branch, we increase the width by a fraction. Fattening

by 20% means the output size in each layer is increased 1.2x.

We fatten every branch in 10% steps as Procedure 1 shows.

Our experiments focus on split8, which have the highest

accuracy drops. Figure 10 shows a summary of these models.

As seen, 40% split-fattened models have higher accuracy than

the original model while having fewer parameters and MAC

operations. On average (for 30% and 40% models), with

4.61x–3.81x fewer parameters and 2.95x–2.5x fewer MAC

operations, split-fattened models achieve accuracy within our

error bound of 3%, Taskerror, while they jointly optimize

memory, computation, and communication for IoT.

ImageNet Models: Table III illustrates the results of ImageNet

models. For the sake of brevity, we only show split8 and one

fattened model. As shown, f40 models restore the accuracy

�� 1

� �2

�! �" �! 31
�# 32 �" !3 �$ 1�4

�#

!

	���%���
�.�����

	����
�.�����

�	
�����
��	
���
�

�	
�����
��	
���

�

�����
��	
���

�

�����
��������
��

��������3
����������

��
��
�#
��
��
��
��

#
�	

�

��
��
�#
��
�#

'�
	�
	�
��
#�5

� ���	�� ���	�� ���	�3

6�31 4�11 6�4� 6�4� 6�13 6�14
4�
4

�
�
4
3
�

	�������
�.�����

	����
�.�����

�	
�����
��	
���
�

�	
�����
��	
���

�

�����
��	
���

�

�����
��������
��

��������3
����������

��
 �
��
	�
�#
	�
#

!*
��
��

��
��
�#

��
	�
��
�

6�31 4�11

��3� ��3�

6��1
��3� 2��2

�
�
4
3
�

	�������
�.�����

	����
�.�����

�	
�����
��	
���
�

�	
�����
��	
���

�

�����
��	
���

�

�����
��������
��

��������3
������������

 �
��
	�
�#
	�
#

!.
��

#'
��
��
�	�

��
#

��
	�
��
�

���

�"�

���

Fig. 9. Split-Only Models: (a) Accuracy, (b) reduction in the number of
parameters, and (c) reduction in the number of MAC operations in comparison
with the original model.

#&$�

�&��
�&$�

#&%�

�&%& �&$'
%&$$

�&�$
�&%�

%&�'
�&�� #&$'

'
#
�
�
$

�����'
�#������%'� (��()#������%''� (��()#���"�
�%'#�*

)*
+�
�"
�#
��
#

'*
+
�

�#"
�#,

��
#

-!

�
��
�"
��

#
�.
�+

�
�

�&�� �&&$ �&&�
�&%% �&�% �&��

�&�' �&�� �&�&
�&�# �&'� �&%#

'
#
�
�
$
%'

�����'
�#������%'� (��()#������%''� (��()#���"�
�%'#�*

)*
+�
�"
�#
��
#

'*
+
�

�#"
�#

/�
��
+

�

�

�#
�.
�+

�
�

���

���

�+�

(�&'#
(%&$� (#&�$(%&'�

('&#$

'&�%

('&��

'&#� %&%'&�$ '&�� %&��

(�
(�
(%
%
�

�����'
�#������%'� (��()#������%''� (��()#���"�
�%'#�

�+
+*

��
++

#
��

��

�

�+

#
(�

&#
-�

�%
��
��
#�0

�)!���$)!���$(�%')!���$(�#')!���$(��')!���$(��'

Fig. 10. Split-Fattened Models – Common visual models (a) Accuracy
difference, (b) reduction in the number of parameters, and (c) reduction in the
number of MAC operations in comparison with the original one (Table II).

within 3% of the original model. The tradeoff for 3% accuracy

loss is about 4x fewer parameters, 4x fewer computations, and

8x less communication load (vs. model parallelism). Figure 11

presents a comparative analysis for the communication load

between distributed original models with model parallelism

and distributed LCP models. Since LCP models avoid com-

munication between their branches, the communication load is

reduced significantly. In short, although split models are more

complex than the original models in terms of the number of

layers and connections, they achieve more parallelism with

less communication load.

B. Exploring Performance on RPis, PYNQs, and AWS

RPi Experiments Setup: To study the benefits of LCP models

versus only model-parallelism methods, we deploy several

models on a distributed system of Raspberry Pi 3s (RPis), the

specifications in Table IV. On each RPi, with the Ubuntu 16.04

operating system, we use TensorFlow and Apache Avro, a

remote procedure call (RPC) and data serialization framework,

for communication between RPis. We measure power using

a USB digital multimeter. A local WiFi network with the

measured bandwidth of 62.24 Mbps and a measured client-to-

client latency of 8.83 ms for 64 B is used. All the real-world

experiments are full-system measurements with all overheads

included without any simulations/estimations.

RPi Performance & Energy: Figure 12 presents latency of

inference per image on RPis. On a single device, AlexNet

has 2.8 seconds latency, while VGG16 achieves 9.4 seconds

latency. By deploying model-parallelism variants of the models

on four and eight RPis, we achieve a maximum of 0.42s

latency, a 6.6x increase, for AlexNet. But, for VGG16, on

four RPis, we observe a slowdown, which is caused by high

communication latency. LCP variants of split4 and split8 can

reach up to 115 ms and 400 ms latency per image for AlexNet

�
���
���
���

����

��
���
��
�

	

���
�

	

���

	

���
�

��
���
��
�

	

���
�

	

���

	

���
�

��
���
��
�

	

���
�

	

���

	

���
�

��
��

���
�#
�	
��

#�
�#

�
��

��
��
�#
��

��
��

 �����#����������� ���

��� ��� ���

����� ������� ���������

����
�

Fig. 11. Communication reduction with LCP models compared to model
parallelism (required pairs of connections).

1674

 !
"#

$%
"

%
" &'
"

&%
'

'&
(

'&
!

#&
"

##
'

#%
$

()
!#

#)
)"
"

 &
&!

!!
&

)(
(&'
)

 %
$"

#%
"$

#"
$"

##
!"

((
"

#)
(!

#"
'!

�
�
!"
!*

��
#�

���

#��	

��

#
����

��
�#��	

��

#
����

��
�#��	

��
��
�
��

#����
��	

��
��
�
��

#����
��	

��
��
�
��

#����
��	

��
��
�
��

#����
	
��
��

�#��	
��
��

�#��	

��
��
�����

#��	

��
#�

���

#��	

��

#
����

��
�#��	

��

#
����

��
�#��	

��
��
�#��	

��
��
�#��	

��
��
�����

#��	

��
#�

���

#��	
��
��

�#��	
��
��

�#��	

��
��
�����

#��	

�
��

����

#��	

���

�
����

�#��	

���

�

�#��
	#!��

"

�

��
� #���$ �
��
���� �(

%&
��
��
�#
�#�
	

�
�#
�	

�

'
�
������#��	#

���
	����

(���#������#��	
���#��
�#�� ��	�����

����

Fig. 12. Latency per image: Model-parallelism, SplitNet [3], and LCP models on RPi (number in parenthesis is #devices).

TABLE III

RESULTS OF IMAGENET LCP MODELS.

Model Name Dataset Top-1 Top-5 # # MAC
Acc. Acc. Param. MAC Opr.

AlexNet ImageNet 57.02 80.32 50.3M 678.97M
AlexNet-split8 ImageNet 49.03 73.10 6.32M 145.37M

AlexNet-split8-f40 ImageNet 54.68 77.06 12.11M 244M

VGG16 ImageNet 70.48 90.02 138.36M 15.47G
VGG16-split8 ImageNet 58.67 81.54 7.64M 2.01G

VGG16-split8-f40 ImageNet 67.24 89.23 33.78M 3.87G

ResNet-50 ImageNet 75.4 93.1 22.80M 4.87G
ResNet-split8 ImageNet 61.79 81.22 5.42M 0.88G

ResNet-split8-f40 ImageNet 72.12 92.19 8.60M 1.18G

MobileNet ImageNet 71.7 90 4.24M 4.86G
MobileNet-split8 ImageNet 59.68 83.23 1.12M 0.93G

MobileNet-split8-f40 ImageNet 68.05 89.12 2.12M 1.34G

For [model_name]-f[number], number represent the percentage of fattening.

��
��

��
��

��
��

��
��

��
��

��
��

��
��
�

��
��
��

��
��
�

��
��
�

��
��

� ��
��
�

�
�
�

��
��

���#�
�����#

���

��� #��!� � �"##���

��� #��!� � �"##���
)$ �%�#�

��
)$ �%�#�

��

)$ �%�&���#�
��

���#�
�����#

���

��� #��!� � �"##���

��� #��!� � �"##���
)$ �%�#�

��
)$ �%�#�

��

)$ �%�&���#�
��

� �'��%))��

��
��
��

#�#
	�

�
��
��
�#
�
�

Fig. 13. All devices energy per inference: Model-parallelism, and LCP on
RPi (number in parenthesis is #devices).

and VGG16, respectively. This is because LCP models are

lightweight and parallelizable and have low communication.

Figure 13 shows measured energy per inference for RPi

implementations. To compare with previous related work,

SplitNet [3], Figure 12 presents the performance of Split-

Net models for AlexNet with different configurations. As

seen, the performance is worse than LCP models. This is

because SplitNet creates more merging/synchronization points

with its tree-structured model design. The resulting model

exponentially introduces more merging/synchronization with

increased depth, which also does not equally split all the layers

(causing load balancing issues). Finally, SplitNet performs

parallelization based on dataset semantics, which means every

dataset and model needs to be manually split. §II provided

more reasons on this performance difference.

TABLE IV
SPECIFICATION OF RPI, PYNQ FPGA, AND AWS.

Raspberry Pi 3B+

CPU 1.2 GHz Quad Core ARM Cortex-A53
Memory 1 GB LPDDR2 SDRAM @ 933Mb/s/pin
Die Size ≈ 196mm2 @ 28 nm

Edge FPGA (Zynq Artix 7 XC7Z020)

Utilization
DSP48E FF LUT

#Unit 96 5427 2343
% 44 5 4

Static Power 0.121 W
Dynamic Power Signals: 0.009 W Logic: 0.003 W

AWS

AWS Instance T2.micro
Specification 1 vCPU, 1 GB Memory, 64 GB Storage

TVM Experiments on PYNQ Boards: As a real-world

example for IoT FPGA implementation, we use TVM [5]

on the PYNQ board. PYNQ is designed for embedded ap-

plications. We use the TVM VTA stack on the PYNQ as

the architecture (RISC-style instructions) and only change

the models (ResNet-18 vs. LCP ResNet-18 Split2 with <1
accuracy drop). In this way, we can measure the benefits of

LCP models without relying on any special tailored hardware.

�
�
�
�

������(�� ������(��
������

��
�

��
�

����
��	
��
#�
���	���

��� �����
	

��

#

�#�
�

��

#

��
�

�
��
��
��
��
��

�
��
	 �! �
��
	 �!
"#$�	�%

�
�&

#
��
��
��
��
�

	#

��
�
�

#��
��

��

''

���

���

��#�	
��
#
���������#�	�������

��� ���

Fig. 14. TVM Experiments: (a) La-
tency per image, (b) memory foot-
print per device (number in paren-
thesis is #devices).

Our performance result shares

the entire system pipeline per-

formance, from a live camera

feed to prediction output on

two boards versus one board.

Figure 14a shows a 2.7x
speedup, including all com-

munication and system over-

heads, network latency, and

jitter because LCP models

are parallelized on two de-

vices and, in total, they have

lower computation and mem-

ory footprints. The measured

reduction in memory footprint

is shown Figure 14b.

AWS Experiments: To see the reduced communication and

distributed execution benefits of LCP models further, we

deploy AlexNet, VGG16, and ResNet-50 models on AWS

T2.micro instances with only one vCPU and 1 GB memory

per instance. Figure 15 presents the derived statistics. In all

cases, LCP models not only reduces the average latency but

also significantly reduce maximum latency. Splits four and

eight have lower speedup compared with our RPi experiments

because all the 4/8 instances are not hosted on the same

machine; thus, the communication cost is higher than the usual

IoT-specific cases that this paper targets.

C. FPGA Experiments

FPGA Experiments Setup: We implement our tailored mi-

croarchitecture on a ZYNQ XC7Z020 FPGA targeting PYNQ-

z1 boards. We use Xilinx Vivado HLS for implementation and

verify the functionality of our implementation using regression

�

���

���

���

� � � �
�	
��

��������

�

���

����

����

� � 	

��
��

�����

�

���

	��

���

� � 	

��
��
��
�	

�

�

�����

�������
���

���
���

Fig. 15. Average, minimum, and maximum latency of distributed LCP on
AWS T2.micro instances with 1 vCPU and 1 GB memory per instance.

1675

��
�

��
�

��
�

��
�

��
�

��
�

��
�

	�
�

��

��
�

��
�

��
�

	�

��
� ��
�

�
��

	�
��

��
�

	�
� 	�
�

	�
��

��
�

	�
�

��
� ��
�

�
�
�
�
�
�
�
�
�
�

�

�
�
�
�

�

��

��
�#
��

��
��

#��
�

��
���
�#
��
�

��
���
�#
��
�

��
���
�#
��
�

��
���
��
��

#
��
�

��
�#
��

��
��

#��
�

��
���
�#
��
�

��
���
�#
��
�

��
���
�#
��
�

��
���
��
��

#
��
�

��
�#
��

��
��

#��
�

��
���
�#
��
�

��
���
�#
��
�

��
���
�#
��
�

��
���
��
��

#
��
�

��
�#
��

��
��

#��
�

��
���
�#
��
�

��
���
�#
��
�

��
���
�#
��
�

��
���
��
��

#
��
�

��
�#
��

��
��

#��
�

��
���
�#
��
�

��
���
�#
��
�

��
���
�#
��
�

��
���
��
��

#
��
�

�������� ����� ��� ��� ����� ��!����"

��
��
��
�#
�#	

��
�#
�

�
������� 	
�����
���#��#��

���������

	�
� ��

 		
��

��
�	

��
��

	�
� ��
	 ��
	 	�

��
	�
��

	�
� ��
� ��
�

	�
�� 	�
��

	�
�

��
�

	

��

�
��

�	
�

	�
�

��
	 	�

�

��
�	

�	
�

�
��
��
��
 �
!�
"�

��
�#
��

�#
��

#��
�

��
�#�
�#
��
�

��
�#�
 #
�
�

��
�#�
$#
�$
�

��
�#�
$�
�
�#
�$
�

��
�#
��

�#
��

#��
�

��
�#�
�#
��
�

��
�#�
 #
�
�

��
�#�
$#
�$
�

��
�#�
$�
�
�#
�$
�

��
�#
��

�#
��

#��
�

��
�#�
�#
��
�

��
�#�
 #
�
�

��
�#�
$#
�$
�

��
�#�
$�
�
�#
�$
�

��
�#
��

�#
��

#��
�

��
�#�
�#
��
�

��
�#�
 #
�
�

��
�#�
$#
�$
�

��
�#�
$�
�
�#
�$
�

��
�#
��

�#
��

#��
�

��
�#�
�#
��
�

��
�#�
 #
�
�

��
�#�
$#
�$
�

��
�#�
$�
�
�#
�$
�

%#������ ����� ��� ��� ����" ��!����!�

������� 	����#������#�������#���#��#*���#
�����
#

��
��
��

�#
��
��

#�
��

#

��
���

	

��
��
�

��
�#	
�#
#�
�

��

���
���

�

���
%#������ ����� ��� ��� ����" ��!����!�

%#������ ����� ��� ��� ����" ��!����!�
�#�

Fig. 16. FPGA with tailored hardware latency and speedup: (a) Latency per
image, (b) speedup over one device (number in parenthesis is #devices).

tests. We use relevant #pragrma as hints to describe our de-

sired microarchitectures in C++. We synthesize and implement

our design using Vivado and report post-implementation (i.e.,
place & route) performance numbers and resource utilizations.

Inputs and output of our design are transferred through the

AXI stream interface. The clock frequency is set to 100 MHz.

Communication for multiple devices is estimated with the

network provided in §IV-B.

FPGA Performance: Figure 16 shows the experiment results

for our IoT-tailored hardware. The latency per image is shown

in Figure 16a, with improvement in communication overhead

versus model-parallelism methods (86% and 60% for 8split

and 4split). Depending on the model, the inference per latency

on a single device is between 4–29ms; a 221–325x speedup

compared to RPi results for AlexNet and VGG16. Our de-

signed LCP models achieve acceptable performance for IoT

computing, which is 10s of inferences per second, around

1–10ms. As observed, the accuracy loss of our split-only

models can be easily restored by fast split-fattened models

of f40 with a negligible performance overhead (maximum

of 20 ms). Figure 16b illustrates the speedup over one device.

The ideal linear speedup shows the ideal scaling speedup with

more available devices. As shown, we achieve superlinear

speedups. An important parameter in scaling concerns how

the overheads scale. The superlinear speedup stems from

the dramatic reduction of communication overhead as par-

allelism increases. In traditional data and model parallelism,

such overhead increases, which causes sublinear speedup.

Figure 17 compares latency per image for LCP and model par-

allelism. On average, LCP models are 3.76x, 8.89x, and 7.17x
faster than their model-parallelism counterparts for AlexNet,

VGG16, and ResNet-50 (4 and 8 devices), respectively. LCP

achieves a maximum and average speedups of 56x and 7x,

compared to the originals (Figure 18, base bars).

Quantization & Pruning: Techniques that reduce the foot-

print of DNNs can be applied to each individual LCP branch.

Basically, the target output for each LCP branch is now

�

�
!�
!�

 #
������ �#�������

	

��

��������#	
���#
���#	
���#����������� ���#	
���

�
���
�

���
�

���

#������� �#�������

�������

��
��
��
�#
�#�
�
��
�#
��

��

���#" ���! "#��#�$ ���#" ���! "#%�%&$

�
�
�
�
�

#������� �#�������

������ ��

���#" ���! "##��#$

������� 	

�� ���������

���#	
����%�#	
���

Fig. 17. Latency per image for IoT FPGA with tailored hardware comparing
LCP vs. model parallelism.

its pre-final activations during optimizations. We study the

benefits of lossless quantization and structured pruning on

top of our LCP models. Based on our experiment, with 3.13

(<integer.fraction>) quantization, our models do not lose

accuracy. Similarly, applying structured pruning [6], for which

systolic arrays gain benefits, reduces the size of parameters

between 40%–50% per convolution layer without an accuracy

drop. Other pruning algorithms increase the sparsity of the

data, which is not necessarily beneficial for systolic arrays.

Figure 18 presents the speedup gained from these techniques

normalized to the baseline implementation for each model, the

execution performance of which shown in Figure 16a. Quan-

tization and pruning themselves, improve the performance of

the original models by 1.96x and 2.2x, respectively, and 4.31x
when applied together. When quantization and pruning are

combined with LCP, the overall performance speedup becomes

14.41x and 16.31x, respectively. Compared to the original

models, LCP + quantization and pruning achieves up to 244x
speedup (VGG16-split8), and an average of 33x.

D. ASIC Implementation

We implement the ASIC design of LCP using an Arizona

State Predictive PDK (ASAP) 7nm technology node. Our

tool chain includes the Synopsys design compiler (DC) for

synthesis, Cadence Innovus for place and route, and Cadence

Tempus for timing and power analysis. As an input to our

ASIC design, we use our same Verilog code generated by

Vivado HLS. Figure 8b show the layout of our chip of size

0.107 mm2 (i.e., 295μm× 365μm). The memory cells shown

in the figure represent the FIFO buffers, used for pipelining.

Figure 19 shows the power consumption of our ASIC design.

The breakdown of power consummation leading to a total

16.1 mW is listed in Figure 19a. As a comparison point,

Eyeriss [7] and EIE [8] consume ≈250 mW and ≈590 mW,

respectively. Besides, as Figure 19b shows, power distributes

uniformly, which prevents hot spot creation.

V. RELATED WORK

We overview DNN computation reduction methods, distri-

bution techniques, and DNN hardware accelerators. Model-

independent techniques reduce DNN computational and mem-

ory requirements without changing the architecture. Prun-

ing [9], [10] removes nearly-zero weights while quantization

or low-precision inference [11], [12] simplifies calculations.

Other methods involve resource partitioning [13], weight bi-

narization [14], [15], and hardware-aware optimizations [16].

However, some techniques reduce accuracy. With increasing

IoT use, industry has created optimized frameworks such as

ELL library and Tensorflow Lite. Others developed mobile-

specific models [17] with efficient operations or models to

1676

'�
(�

�
)�

��
)�)�

�(
)�

(*
��
*�

)

)+

)++

)+++

��
 %

��
�

�!
� �
*

�!
� �

�

�!
� �
,

�!
� �
,�
��
+

��
 %

��
�

�!
� �
*

�!
� �

�

�!
� �
,

�!
� �
,�
��
+

��
 %

��
�

�!
� �
*

�!
� �

�

�!
� �
,

�!
� �
,�
��
+

��
 %

��
�

�!
� �
*

�!
� �

�

�!
� �
,

�!
� �
,�
��
+

��
 %

��
�

�!
� �
*

�!
� �

�

�!
� �
,

�!
� �
,�
��
+

��
 %

��
�

�!
� �
*

�!
� �

�

�!
� �
,

�!
� �
,�
��
+

(��
 "���� ��� "� ���� �% "���� ��� "�#-#���� �%
�!

��

!#
��

�
��

#
�

�

#�"
�#

1�
 �

#�
��

#.�
"%

�#�
 �
�

/

 ����
� ����� ��
��
� ����� �
��
��	

��

�

�
�

��
��

�

�����

Fig. 18. FPGA with tailored hardware with lossless (≤0.1%) quantization & structured pruning to achieve additional speedup.

�	�

�	�

�	��

�	

�
�
�
�

�

�

�

�

��
���
���
	

��
���

�
��
���

�
�

���
��
	�

�

�����

�
��
�

��

	

�
�

��
��
��

�
�

����!��
�������

"���!��
�������
�� ����
�������
"������
�������
�� ����
������

��� ���
Fig. 19. Power Consumption for 7-nm ASIC Design @800MHz: (a) break-
down (b) distribution.

reduce parameters. However, they often sacrifice accuracy

for efficiency [18], or lack efficient parallelism. Few papers,

like SplitNet [3], focus on model parallelizability but face

issues with branch imbalances and device invariance. Recently,

automated design process has seen increased interest [4], [19],

[20]. In [21], in follow up to LCP, we propose the relaxation of

the single-chain dependency constraint in neural architecture

search (NAS), facilitating higher concurrency and distribution

opportunities in deep learning architectures. This approach,

complemented with a new generator and transformation block,

points towards a promising direction for reducing inference

latency and improving computational efficiency in modern

deep learning models. Distributing large DNN models has

been also explored [22]–[24].

VI. CONCLUSIONS

This paper proposed LCP models, designed for efficient DNN

inference in IoT systems. LCP models optimize communi-

cation while reducing memory and computation by utilizing

several narrow independent branches. We presented our results

on RPis, FPGAs for IoT, AWS instances, and a tailored

systolic-based hardware.

REFERENCES

[1] R. Hadidi, B. Asgari, S. Jijina, A. Amyette, N. Shoghi, and H. Kim,
“Quantifying the design-space tradeoffs in autonomous drones,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
661–673.

[2] R. Hadidi, J. Cao, Y. Xie, B. Asgari, T. Krishna, and H. Kim,
“Characterizing the deployment of deep neural networks on commercial
edge devices,” in 2019 IEEE International Symposium on Workload
Characterization (IISWC), 2019.

[3] J. Kim, Y. Park, G. Kim, and S. J. Hwang, “Splitnet: Learning to
semantically split deep networks for parameter reduction and model
parallelization,” in ICML. JMLR. org, 2017, pp. 1866–1874.

[4] S. Xie, A. Kirillov, R. Girshick, and K. He, “Exploring randomly wired
neural networks for image recognition,” in IEEE ICML, 2019, pp. 1284–
1293.

[5] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu,
L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm: end-to-end opti-
mization stack for deep learning,” arXiv preprint arXiv:1802.04799, pp.
1–15, 2018.

[6] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep
convolutional neural networks,” ACM Journal on Emerging Technologies
in Computing Systems (JETC), vol. 13, no. 3, p. 32, 2017.

[7] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–
138, 2017.

[8] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2016, pp. 243–254.

[9] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware par-
allelism,” in 44th International Symposium on Computer Architecture
(ISCA). IEEE, 2017, pp. 548–560.

[10] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” in Advances
in Neural Information Processing Systems (NIPS), 2017, pp. 2181–2191.

[11] U. Köster, T. Webb, X. Wang, M. Nassar, A. K. Bansal, W. Constable,
O. Elibol, S. Gray, S. Hall, L. Hornof et al., “Flexpoint: An adaptive
numerical format for efficient training of deep neural networks,” in NIPS,
2017, pp. 1742–1752.

[12] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of
deep convolutional networks,” in ICML, 2016, pp. 2849–2858.

[13] J. Guo, S. Yin, P. Ouyang, L. Liu, and S. Wei, “Bit-width based resource
partitioning for cnn acceleration on fpga,” in 25th Annual IEEE FCCM,
2017.

[14] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiv:1605.04711, 2016.

[15] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or- 1,” arXiv preprint
arXiv:1602.02830, 2016.

[16] B. Asgari, R. Hadidi, and H. Kim, “Ascella: Accelerating sparse com-
putation by enabling stream accesses to memory,” 2020.

[17] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[18] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520.

[19] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in CVPR, 2018, pp. 8697–
8710.

[20] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 2016.

[21] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Reducing inference latency
with concurrent architectures for image recognition at edge,” in 2023
IEEE International Conference on Edge Computing and Communica-
tions (EDGE), 2023.

[22] R. Hadidi, J. Cao, M. Woodward, M. S. Ryoo, and H. Kim, “Distributed
perception by collaborative robots,” IEEE Robotics and Automation
Letters, vol. 3, no. 4, pp. 3709–3716, 2018.

[23] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Towards collaborative
inferencing of deep neural networks on internet of things devices,” IEEE
Internet of Things Journal, 2020.

[24] R. Hadidi, J. Cao, B. Asgari, and H. Kim, “Creating robust deep neural
networks with coded distributed computing for iot,” in 2023 IEEE
International Conference on Edge Computing and Communications
(EDGE), 2023.

1677

