

Ramyad Hadidi, Jiashen Cao, Yilun Xie, Bahar Asgari Tushar Krishna, Hyesoon Kim

a short story...

"We ran a full DNA test, STR and Mitochondrial analysis... and Bob here 'Googled' it just to make sure."

Our aim is to provide an unbiased characterization of edge devices

IISWC'19

Georgia Tech

Motivation: Deep Learning is Everywhere

Recommendation

© Nvidia

In-The-Edge Inferencing

- Some applications are in-the-edge
 - Self-driving cars, smart homes/cities
- Sometimes is the only option
 - No Internet connectivity
 - Intermittent connectivity
- Security and privacy
 - Most straightforward way to preserve privacy and ensure security
 - Personalization
- Cloud is not scalable forever
- Edge could be even faster
 - No cost associated with communication with the cloud
- Sometimes cost efficient

Challenges of In-The-Edge Inferencing

- When to use the cloud?
- Load balancing between edge devices
- API and service management
- Programming model and architectures
- Security, reliability, and fault tolerance

Our Focused Challenge:

Resources of Edge Devices

 \neq

Intensive Resource Requirements of Real-Time Deep Learning

To Measure is to Know!

- Several companies have released edgespecific devices
- Several frameworks for deep learning
- Several optimizations across HW/SW stack, several papers...
- How to choose one?
 - No unified study
 - Specially for single-batch inferencing, the common case for edge
 - Similar endeavors, such as MLPerf.
 Our focus is more on the edge.

IISWC'19

Outline

Introduction & Motivation

Deep Learning Models

- Frameworks & Optimizations
- Hardware Platforms

Experiments

- Execution Time Analysis
- Edge Versus HPC Platforms
- Virtualization Overhead Study
- Energy Measurements
- Power & Time Correlation

Conclusions

- Framework Analysis
 - Framework Comparisons
 - Edge-Specific Frameworks
 - Software Stack Analysis
- Temperature Measurements

IISWC'19

Really Short Introduction on DNN

Computation Layers:

- Fully connected (FC): Weighted sum
- Convolution (Conv): Basically a shared version of fully connected
- Others: Activation, Batch Normalization, Pooling layers
- Deep neural network (DNN) is basically a stacking of these layers:

Our Models

Models: Famous hand-crafted stacking of those layers We focusing on computer vision, or convolution neural networks (**CNNs**)

	Model Name	Input Size	FLOP (giga)	Number of Parameters	FLOP/Param.
$\left(\right)$	ResNet-18 [44]	224x224	1.83	11.69 m	156.54
	ResNet-50 [44]	224x224	4.14	25.56 m	161.97
	ResNet-101 [44]	224x224	7.87	44.55 m	176.66
	Xception [45]	224x224	4.65	22.91 m	202.97
	MobileNet-v2 [46]	224x224	0.32	3.53 m	90.65
	Inception-v4 [47]	224x224	12.27	42.71 m	287.29
	AlexNet [48]	224x224	0.72	102.14 m	7.05
	VGG16 [5]	224x224	15.47	138.36 m	111.81
	VGG19 [5]	224x224	19.63	143.66 m	136.64
	VGG-S [5]	32x32	0.11	32.11 m	3.42
	VGG-S [5]	224x224	3.27	102.91 m	31.77
	CifarNet [49]	32x32	0.01	0.79 m	12.65
	SSD [39] with MobileNet-v1 [40]	300x300	0.98	4.23 m	236.07
	YOLOv3 [41], [42]	224x224	38.97	62.00 m	628.54
	TinyYolo [42]	224x224	5.56	15.87 m	350.35
	C3D [43]	12x112x112	57.99	89.00 m	734.05

FLOP and **#Parameters**:

10

Reported for every DNN Proxy for compute/memory

FLOP/Parameter:

Represents reuse possibility

Image Recognition

Characterized Models FLOP/Param

We study a wide range of models

- Models sorted by their FLOP/Param
 - Compute-intensive (right side) vs. Memory-intensive (left side)
 - Efficient model design? e.g., Accuracy%/Param

Outline

- Introduction & Motivation
- Deep Learning Models

Frameworks & Optimizations

Hardware Platforms

Experiments

- Execution Time Analysis
- Edge Versus HPC Platforms
- Virtualization Overhead Study
- Energy Measurements
- Power & Time Correlation

Conclusions

- Framework Analysis
 - Framework Comparisons
 - Edge-Specific Frameworks
 - Software Stack Analysis
- Temperature Measurements

IISWC'19

Frameworks

Popular off-the-shelf DNN frameworks provide tools to design, train, and deploy DNN models

- We study widely-used frameworks:
 - Common: TensorFlow (+Keras), Pytorch, DarkNet, Caffe1/2
 - Specific/Mobile Platforms:

TFLite, Movidius, TensorRT

	TensorFlow	TFLite	Caffe1/2	Movidius	PyTorch	TensorRT	DarkNet
Language†	Python					С	
Industry Backed	✓					X	
Training Framework	V X V						
Usability	***	*	**	*	***	**	**
Adding New Models	**	*	***	*	***	**	***
Pre-Defined Models	***	*	**	*	***	**	**
Documentation	**	*	*	*	***	*	*
No Extra Steps	1	X	1	X	1	1	1
Mobile Device Deployment	×			×			
Low-Level Modifications	**	*	**	*	*	*	***
Compatibility with Others	*	*	*	*	*	**	*

Generality vs. Specialization

Several design decisions that tradeoff:

Generality to Platforms \neq Specialization & Performance

For instance, TensorRT over PyTorch on <u>Nvidia Jetson Nano</u>: **4.10x Speedup**

Why? Optimizations!

Each Framework has its own set of optimizations:

- Generality contradicts with most of the optimizations
- Optimizations limits hardware platforms
- We study officially supported optimizations for inference

		TensorFlow	TFLite	Caffe1/2	Movidius	PyTorch	TensorRT	DarkNet
	Quantization	 ✓ 	1	1	1	1	1	×
Optimizations	Mixed-Precision‡	×	X	×	X	×	1	×
	Dynamic Graph	×§	X§	×	X	1	1	×
	Pruning‡‡	√ ††	1	×	X	×	1	×
	Fusion	√ ††	1	×	1	×	1	×
	Auto Tuning	×	X	×	X	X	1	×
	Half-Precision	1	1	1	1	1	1	×

Optimizations

Please check the paper for discussions about each optimization

IISWC'19

Georgia Tech

Outline

- Introduction & Motivation
- Deep Learning Models
- Frameworks & Optimizations

Hardware Platforms

Experiments

- Execution Time Analysis
- Edge Versus HPC Platforms
- Virtualization Overhead Study
- Energy Measurements
- Power & Time Correlation

Conclusions

- Framework Analysis
 - Framework Comparisons
 - Edge-Specific Frameworks
 - Software Stack Analysis
- Temperature Measurements

Hardware Platforms

Hardware Platforms

comparch

Outline

- Introduction & Motivation
- Deep Learning Models
- Frameworks & Optimizations
- Hardware Platforms

Experiments

- Execution Time Analysis
- Edge Versus HPC Platforms
- Virtualization Overhead Study
- Energy Measurements
- Power & Time Correlation

Conclusions

- Framework Analysis
 - Framework Comparisons
 - Edge-Specific Frameworks
 - Software Stack Analysis
- Temperature Measurements

Experiments

IISWC'19

Georgia Tech

Question

Which device, regardless of frameworks, performs the best?

IISWC'19

Execution Time Analysis

Time per inference on all edge devices with best performing framework

compar

24

Takeaways

- Raspberry Pi executes all models (generality)
- GPU-based platforms achieve a good balance between performance and generality
- EdgeTPU performs the best on MobileNet
 - But has several compilation, quantization, retraining issues for extending to other models
- Movidius results are all close to others, but not the best
- No overall best device

IISWC'19

For edge specific single-batch inferences... Are HPC platforms really good at them?

IISWC'19

Georgia Tech

Edge vs. HPC Platforms - Time

Time per inference between edge and HPC platforms with **PyTorch**

Edge vs. HPC Platforms - Speedup

Time per inference between edge and HPC platforms with **PyTorch**

■ Jetson TX2 ■ Xeon CPU ■ GTX Titan X ■ Titan Xp ■ RTX 2080 🖾 GEOMEAN

Takeaways

- HPC platforms are designed to be throughput-oriented for multi-batch DNN computations
- Single-batch inferencing is latency-sensitive
 - Requires new design philosophy
- Then, CPUs should perform better, they are latency sensitive...
 - No, our benchmarks are compute-bounded on CPU
- HPC Platforms are not as good for single-batch inferecing

comparch

Question

Does the choice of which general framework matter?

(we saw a case for edge-specific frameworks before)

IISWC'19

Georgia Tech

Frameworks Comparison - RPi

Time per inference on **Raspberry Pi** across different frameworks.

Frameworks Comparison - TX2

Time per inference on Jetson TX2 across different frameworks

comparch

Frameworks Comparison - Titan X

Time per inference on **Titan X** (TensorFlow and PyTorch)

Georgia

compare

33

Takeaways

- On Raspberry Pi, TensorFlow performs the best
 - But, not as good as edge-specific platforms
- On Jetson TX2, PyTorch performs the best
- Interestingly, on Jetson, TX2 Caffe, not updated after 2017, achieves a similar results
- Why?
 - Dynamic vs. static computation graph
 - Tensorflow numerous APIs and hard usability

Question

Energy is important for edge devices. How do devices compare if we add energy?

IISWC'19

Georgia Tech

Energy Measurements

Energy per Inference for a single inference.

Power & Time Correlation

Measuring correlation between power and execution time.

Takeaways

- GPU-based platforms have 5x energy saving than their HPCbased counterparts
- Raspberry Pi, when considering time-power graph, is actually a good device!
 - Besides Raspberry Pi has several other components that consume energy
- Movidius is the most energy-efficient device
- EdgeTPU and Jetsons tradeoff energy efficiency with performance

Other Experiments

Please check paper for all the experiments

- Virtualization overhead study
- TF-lite and TensorFlow study
- Software stack analysis
- Temperature behavior

Our codebase and implementation guide are available on GitHub:

https://github.com/gthparch/edgeBench

Please help us in extending current models and frameworks.

39

IISWC'19

E README.md

compar

40

Conclusions

- Which edge device is the best? Depends
- Are HPC platforms good for single-batch inferences? Only 3x
- Does edge-specific platforms help? Yes, but with a cost
- Does the choice of general framework matter? Yes, but no definite answer on which
- What does help the performance the most? HW-SW codesigns
- What does energy measurements show? Tradeoff between energy consumption and inference time

Conclusions

"We ran a full DNA test, STR and Mitochondrial analysis... and Bob here 'Googled' it just to make sure."

IISWC'19

41

Georgia 🌾 comparch

Backup Slides

Optimizations: Quantization

Commonly Supported: For inference, it has been shown that instead of **FP32**, we can use **INT8** without any accuracy loss:

- Easy to implement
- Every hardware supports
- Great gains!

INT8 Operation	Energy Saving vs FP32	Area Saving vs FP32
Add	30x	116x
Multiply	18.5x	27x
*Dally, 2015		

Optimizations: Mixed-Precision

Not Commonly Supported: Use a mix of INT8, INT4 units.

- Need to ensure if a DNN model tolerate INT4 precision.
- Hardware support needed
- Not easy to implement, needs hardware support
 - ▶ For instance: NVIDIA Turing Architecture (e.g., Nvidia Nano Jetson)

🍘 comparch

46

Hardware Platforms

THE SPECIFICATIONS OF HARDWARE PLATFORMS USED IN THIS PAPER.

Category	IoT/EdgeGPU-BasedDevicesEdge Devices		Custom- Edge Accel		FPGA Based	CPU	HPC Platforms J GPU			
Platform	Raspberry Pi 3B [34]*	Jetson TX2 [69]	Jetson Nano [36]	EdgeTPU [35]	Movidius NCS [37]*	PYNQ-Z1 [64]	Xeon	RTX 2080	GTX Titan X	Titan Xp
CPU	4-core Ctx.A53 @1.2 GHz*	4-core Ctx.A57 2-core Denver2 @2 GHz	4-core Ctx.A57 @1.43 GHz	4-core Ctx.A53 & CtxM4 @1.5 GHz	N/Ap	4-core Ctx.A9 @650 MHz	2x 22-core E5-2696 v4 @2.20GHz	N/Ap*	N/Ap	N/Ap
GPU	No GPGPU	256-core Pascal μA	128-core MaxwellμA	N/Ap	N/Ap	N/Ap	N/Ap	2944-core Turing μA	3072-core MaxwellμA	3840-core PascalμA
Accelerator	N/Ap	N/Ap	N/Ap	EdgeTPU	Myriad 2 VPU	ZYNQ XC7Z020	N/Ap	N/Ap	N/Ap	N/Ap
Memory †	1 GB LPDDR2	8 GB LPDDR4	4 GB LPDDR4	N/Av*	N/Av	630 KB BRAM 512 MB DDR3	264 GB DDR4	8 GB GDDR6	12 GB GDDR5	12 GB GDDR5X
Idle Power‡	1.33	1.90	1.25	3.24	0.36	2.65	≈70	≈39	≈15	≈55
Average Power‡	2.73	9.65	4.58	4.14	1.52	5.24	300 TDP	~	≈100	≈
Platform	All	All	All	TFLite	NCSDK	TVM/FINN	A11	All	All	All

[†] Effective memory size used for acceleration/execution of DNNs, e.g., GPU/CPU/Accelerator memory size. ^{*} Ctx.: Arm Cortex. N/Ap: Not applicable. N/Av: Not available. [‡] : Measured idle and average power while executing DNNs, in Watts. ^{*} : Raspberry Pi 4B [70], with 4-core Ctx.A72 and maximum of 4 GB LPDDR4, was released after this paper acceptance. With better memory technology and out-of-order execution, Raspberry Pi 4B is expected to perform better. ^{*} Intel Neural Compute Stick 2 [61] with a new VPU chip and support for several frameworks was announced during paper submission, but the product was not released.

Georgia Tech

Experiments Frameworks

THE SUMMARY OF EXPERIMENTS DONE IN THIS PAPER.

Experiments	Execution Time	(ramework Analysis)					Edge vs. HPC Virtualization Overhead		Energy Measurments		Temperature		
Section/Figure	VI-A/2	VI-B/3	VI-B/4	VI-B/6	VI-B/7	VI-B/8	VI-B/5	VI-C/9	VI-C/10	VI-D/13	VI-E/11	VI-E/12	VI-F/14
Metric	Inference Time (ms or s)					Inference Time (ms)	Speedup Over TX2	Inference Time (s)	Energy per Inference (mJ)	Inf. Time (ms) vs. Power (w)	Temp- erature (°C)		
FW/Devices	RPi/TFLite,TF Nano/T-RT TX2/PT EdgeTPU/TFLite Mavidus/NCSDK PYNQ/TVM	RPi/DarkNet RPi/Caffe RPi/TF RPi/PT	TX2/DarkNet TX2/Caffe TX2/TF TX2/PT	GTX/TF GTX/PT	Nano/T-RT Nano/PT	RPi/TF RPi/T-Lite	RPi/PT RPi/TF TX2/PT TX2/TF	TX2/PT Xeon/PT GTX/PT T-XP/PT 2080/PT	TX2/PT Xeon/PT GTX/PT T-XP/PT 2080/PT	Bare Metal RPi/TF Docker RPi/TF	RPi/TFLite Nano/T-RT TX2/PT EdgeTPU/T-Lite Mavidus/NCSDK GTX/PT	RPi/TFLite Nano/T-RT TX2/PT EdgeTPU/T-Lite Mavidus/NCSDK GTX/PT	RPi/TFLite Nano/T-RT TX2/PT EdgeTPU/T-Lite Mavidus/NCSDK GTX/PT

FW: Framework, TX2: Jetson TX2, Nano: Jetson Nano, PT: PyTorch, TF: TensorFlow, TFLite: TensorFlow Lite, T-RT: Tensor RT, GTX: GTX Titan X, T-XP: Titan Xp, 2080: RTX 2080

Execution Time Analysis - Legend

MODELS AND PLATFORMS COMPATIBILITY MATRIX.

Platform Model	RPi3	Jetson TX2	Jetson Nano	EdgeTPU	Movidius	PYNQ
ResNet-18		1	1	Δ	1	 ✓
ResNet-50		1	1	1	1	$\diamond \diamond$
MobileNet-v2	 ✓ 	1	1	1	1	$\diamond \diamond$
Inception-v4	 ✓ 	1	1	1	1	$\diamond \diamond$
AlexNet	♦	1	1	Δ	1	$\diamond \diamond$
VGG16	♦	1	1	1	1	$\diamond \diamond$
SSD MobileNet-v1		1	1	1	1	$\diamond \diamond$
TinyYolo	 ✓ 	1	1	Δ	1	$\diamond \diamond$
C3D	\diamond	✓	✓	Δ	✓	$\diamond \diamond$

[♦] Large memory usage, uses dynamic graph.

[∀] Code incompatibility. ^{◊◊} Large BRAM usage. Requires accessing host DDR3, considerably slowdowns execution.

^Δ Barriers in converting models to TFLite. Check §VI-A.

Software-Stack Analysis - RPi

Time Profiling PyTorch and TensorFlow software stacks on **Raspberry Pi**

comparch

Software-Stack Analysis – TX2

Time Profiling PyTorch and TensorFlow software stacks on **Jetson TX2**

Edge-Specific Frameworks - RPi

Time per inference on RPi with TensorFlow, PyTorch, and TFLite

Georgia 🎻 comparch

Virtualization Overhead Study

Virtualization is a common solution for platform diversity. Does it has performance impact? How much?

🍘 comparch

53

Temperature Measurements (I)

Measuring correlation between temperature and DNN execution.

DEVICE SPECIFICATIONS FOR TEMPERATURE EXPERIMENTS.

Device	Heatsink	Cooling Fan	Idle Temperature	Fan Activated?
Raspberry Pi	× 14x14 mm	×	43.3 °C	×
Jetson TX2	✓ 80x55x20 mm	1	32.4 °C	1
Jetson Nano	✓ 59x39x17 mm	×	35.2 °C	×
Edge TPU	✓ 44x40x9 mm	1	33.9 °C	×
Movidius	✓† 60x27x14 mm	×	25.8 °C	×

[†] USB stick is designed as a heatsink.

IISWC'19

Georgia Tech

Temperature Measurements (II)

Measuring correlation between temperature and DNN execution.

*411719*14159142597920530666691415404086865533**8**83977<u>7171914159141597</u> 17111713832042282222288330566666666653333040822883300665971415904205306666914(133 3087408C330566666666653085305066666530859797471414141333338530833806666666 30669197717171714141419997474822283308592228330859223833080833111889774917+41597 79046666566666666666666666666666666530909208533056666666666675977223322223820338338308082Q553 4 91 #808333330000083332222255538866665533322855050566666614159742987471719191420408 **50888833040823285**305580**608**33228308080808568**5**30505306553**333066**64 30666666977771914159141597429832C228832282289141597906566666**5** \$8300666691714141415939285305066666666691591415974330466666666666519159390805658 £55666669111889774917t4159777#\$08053066859777719141914\$7974114159142592022859 \$22286553330859777722228830805666591777777777777777797920932833222285305066669 **7**4414148690834066666555333330805350666666 *3917141914*14149974291414\91415915979