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Proposing a Fast and Scalable Systolic Array 
for Matrix Multiplication 

Bahar Asgari, Ramyad Hadidi, Hyesoon Kim



Matrix Multiplication 2

Matrix multiplication is the key operation in many applications
Example: convolution in neural networks

Systolic arrays perform matrix multiplication that
} Includes several similar operations (i.e., multiply and accumulation) 
} Captures high data reuse rate
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Systolic Arrays for Matrix Multiplication 3

} Non-stationary
} None of the operands are stationary  

An⇥m ⇥Bm⇥p = Cn⇥p
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} Non-stationary
} None of the operands are stationary

} Phase 1: 
} only processing
} Time steps: 1
}

An⇥m ⇥Bm⇥p = Cn⇥p
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} Non-stationary
} None of the operands are stationary

} Phase 1  
} only processing 
} Time steps: 2
}

An⇥m ⇥Bm⇥p = Cn⇥p
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} Non-stationary
} None of the operands are stationary

} Phase 1: 
} only processing
} Time steps: 3
}

An⇥m ⇥Bm⇥p = Cn⇥p
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} Non-stationary
} None of the operands are stationary

} Phase 1: 
} only processing
} Time steps: 4
}

An⇥m ⇥Bm⇥p = Cn⇥p
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} Non-stationary
} None of the operands are stationary

} Phase 1: 
} only processing
} Time steps: 5
}

An⇥m ⇥Bm⇥p = Cn⇥p
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} Non-stationary
} None of the operands are stationary

} Phase 1: 
} only processing
} Time steps: n + m 

An⇥m ⇥Bm⇥p = Cn⇥p
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} Non-stationary
} None of the operands are stationary

} Phase 2: 
} processing and offloading
} Time steps: n + m + 1

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1
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} Non-stationary
} None of the operands are stationary

} Phase 3: 
} only offloading
} Time steps: n + m + p - 2 + 1
}

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 2Phase 1
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} Non-stationary
} None of the operands are stationary

} Phase 3: 
} only offloading
} Time steps: n + m + p - 2 + 2
}

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 2Phase 1
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} Non-stationary
} None of the operands are stationary

} Phase 3: 
} only offloading
} Time steps: n + m + p - 2 + n
}

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 2Phase 1
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} Non-stationary
} None of the operands are stationary

} Phase 3: 
} only offloading
} Time steps: 2n + m + p - 2
}

An⇥m ⇥Bm⇥p = Cn⇥p
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} Stationary
} One operand (here, B) is stationary

An⇥m ⇥Bm⇥p = Cn⇥p
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} Stationary
} One operand (here, B) is stationary

Phase 1: 
} only loading B
} Time steps: 1

An⇥m ⇥Bm⇥p = Cn⇥p
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} Stationary
} One operand (here, B) is stationary

Phase 1: 
} only loading B
} Time steps: m - 1

An⇥m ⇥Bm⇥p = Cn⇥p
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} Stationary
} One operand (here, B) is stationary

Phase 2: 
} loading B and processing
} Time steps: m - 1 + 1

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1
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} Stationary
} One operand (here, B) is stationary

Phase 3: 
} only processing
} Time steps: m + 1

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2
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} Stationary
} One operand (here, B) is stationary

Phase 3: 
} only processing
} Time steps: m + m - 1

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2
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An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2&3

} Stationary
} One operand (here, B) is stationary

Phase 4: 
} processing and offloading
} Time steps: 2m - 1  + 1
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} Stationary
} One operand (here, B) is stationary

Phase 4: 
} processing and offloading
} Time steps: 2m - 1 + 2

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2&3
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An⇥m ⇥Bm⇥p = Cn⇥p

} Stationary
} One operand (here, B) is stationary

Phase 4: 
} processing and offloading
} Time steps: 2m - 1 + 3

Phase 1 &2&3
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An⇥m ⇥Bm⇥p = Cn⇥p

} Stationary
} One operand (here, B) is stationary

Phase 4: 
} processing and offloading
} Time steps: 2m - 1 + n + p - 2 

Phase 1 &2&3
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} Stationary
} One operand (here, B) is stationary

Phase 5: 
} only offloading
} Time steps: 2m -1 + n + p - 2 + 1

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 4Phase 1 &2&3
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} Stationary
} One operand (here, B) is stationary

Phase 5: 
} only offloading
} Time steps: n + 2m + p - 2

An⇥m ⇥Bm⇥p = Cn⇥p
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The systolic arrays proposed by prior work are not scalable:
} Their latency grows linearly with the size of the inputs
} Latency is the key metric for single-batch inference

An⇥m ⇥Bm⇥p = Cn⇥p

Stationary
Time steps: n + 2m + p - 2

Non-Stationary
Time steps: 2n + m + p - 2
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Matrix multiplication consists of
} Multiplication
} Additions

In optimized implementation 
} Latency increases sublinearly with the input size

We propose a systolic array with separate
} Multiplier array
} Adder-tree array

Time steps: n + 2m + p - 2
m + log(m)

This can be done in log(m) for m numbers
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One operand (here, B) is stationary

An⇥m ⇥Bm⇥p = Cn⇥p
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One operand (here, B) is stationary

Phase 1: 
} only loading B
} Time steps: 1

An⇥m ⇥Bm⇥p = Cn⇥p
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One operand (here, B) is stationary

Phase 1: 
} only loading B
} Time steps: m-1

An⇥m ⇥Bm⇥p = Cn⇥p
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One operand (here, B) is stationary

Phase 2: 
} loading B and multiplication
} Time steps: m - 1 + 1

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1
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One operand (here, B) is stationary

Phase 3: 
} multiplication and addition
} Time steps: m + 1

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2
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One operand (here, B) is stationary

Phase 3: 
} multiplication and addition
} Time steps: m + 2

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2
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One operand (here, B) is stationary

Phase 3: 
} multiplication and addition
} Time steps: m + 3

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2
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One operand (here, B) is stationary

Phase 3: 
} multiplication and addition
} Time steps: m + 4

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2
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One operand (here, B) is stationary

Phase 4: 
} only addition
} Time steps: m + n + p - 2 + 1

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2 Phase 3
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One operand (here, B) is stationary

Phase 4: 
} only addition
} Time steps: m + n + p - 2 + 2

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2 Phase 3
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One operand (here, B) is stationary

Phase 4: 
} only addition
} Time steps: m + n + p - 2 + 3

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2 Phase 3
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One operand (here, B) is stationary

Phase 4: 
} only addition
} Time steps: m + n + p - 2 + log (m)

An⇥m ⇥Bm⇥p = Cn⇥p

Phase 1 &2 Phase 3
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One operand (here, B) is stationary

Phase 4: 
} only addition
} Time steps: n + m + log(m) + p - 2

An⇥m ⇥Bm⇥p = Cn⇥p
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Tools and Devices:
} ZYNQ XC7z020
} Vivado HLS

Benchmark:
} DNNs (VGG16, VGGS, AlexNet, CifarNet, ResNet50)

Metrics:
} Latency
} Energy consumption 
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Our proposed systolic array is 
} 1.99x faster than non-stationary while consuming 2.12x less energy 
} 1.83x faster than stationary while consuming 2.27x less energy

1.99 1.83
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Systolic arrays have seen significant interest 
} because of their unique interconnections that satisfies the unique requirement of data 

reuse in matrix multiplication. 

Although the systolic arrays in prior work offer high throughput, their 
latency is not optimized

} Latency is the key factor for single-batch inference!

To optimize latency, we propose a new systolic array consisting of 
separate multiplier and adder-tree arrays

} It is faster than both prior proposals when the size of the operands grows 


