
ERIDANUS: Efficiently
Running Inference of DNNs
Using Systolic Arrays

Bahar Asgari, Ramyad Hadidi, Hyesoon Kim,

and Sudhakar Yalamanchili

Georgia Institute of Technology

Abstract—Systolic arrays with promising attributes, such as high degree of concurrent

computation and high data-reuse rate, are attractive solutions for dense linear algebra.

Recently, systolic arrays have been used for accelerating the inference of deep neural

networks (DNNs). However, as sparsification mechanisms are applied to DNNs during or

after training, DNN inference is usually a sparse problem. Therefore, it cannot fully benefit

from the fundamental advantages offered by systolic arrays. To solve this challenge, we

propose Eridanus, an approach to structured pruning that produces DNNs compatible with

the synchronous and rhythmic flow of data frommemory to systolic arrays.

& SYSTOLIC ARRAYS ARE of increasing interest

in accelerating linear algebra operations, and

thus, deep neural network (DNN) inference [e.g.,

tensor processing unit (TPU)]. Systolic arrays

are fine-grained, highly concurrent architectures

that are distinctive in their approach for maxi-

mizing data reuse. Data reuse minimizes the

memory bandwidth demand via interacting data

flows in the compute arrays. As a result, systolic

arrays work well for computing linear recur-

rences and dense linear algebra computations.

However, DNN inferencing, which heavily relies

on convolutional neural networks (CNN), is a

sparse problem, because the close-to-zero

weights are often being removed during or

after training. Although pruning the individual

weights reduces computation and memory foot-

prints,1;2 it creates irregular sparse models that

cannot fully benefit from the fundamental advan-

tages offered by systolic arrays.

To overcome these challenges, structured prun-

ing techniques have been proposed, which prune

the weights at various coarse granularities.2--7

Table 1 and the “Prior Structured Pruning Work”

section compare the prior structured pruning in

details from various aspects and evaluate their

Digital Object Identifier 10.1109/MM.2019.2930057

Date of publication 25 July 2019; date of current version 10

September 2019.

Theme Article: Machine Learning AccelerationTheme Article: Machine Learning Acceleration

46
0272-1732 � 2019 IEEE Published by the IEEE Computer Society IEEE Micro

effectiveness tobeused for systolic arrays. In sum-

mary, the comparisons suggest that the preceding

structured pruning techniques are advantageous

in creating models suitable for central process-

ing units (CPUs) and graphics processing units

(GPUs) by reducing the number of operations and

thereby decreasing latency. However, the key

challenge is that they do not harness the full bene-

fits (i.e., throughput and energy efficiency) of sys-

tolic arrays. This is because the conventional

choices of pruning granularities (e.g., filter, kernel)

used for CPU and GPU optimizations are not the

most effective choice for pruning a model for sys-

tolic arrays. In other words, the outputs of the

structured pruning algorithms do not match with

the underlying data-reuse patterns and indexing

functions in systolic arrays. Therefore, DNN

inferencing either underutilizes the compute units

or requires external buffering/caching, both of

which cause performance loss from the best

achievable performance gain. Our goal is to pro-

pose a pruning technique, the output of which is

compatible with the data-reuse patterns in sys-

tolic arrays and streamingmemory interface.

To achieve this goal, we produce DNN mod-

els, the nonzero values of which are clustered

spatially into locally dense regions that can be

compactly stored (i.e., less storage or meta-

data overhead) and efficiently streamed from

memory. Our technique, Eridanus, applies

structured pruning in a way that it maintains a

systolic-streamlining access pattern. This is a

major source of improvement for systolic

arrays, and to reconstruct data-reuse patterns,

which sustains throughput and eliminates buff-

ering/caching. Eridanus consists of the follow-

ing key insights:

� To capture the data reuse patterns in systolic

arrays and enable data streaming, modifying

the distribution of nonzero values is more

influential than minimizing the number of

operations or thememory footprint.

� To achieve an appropriate distribution of

nonzero values, examining the correlation

among the filters rather than the individual

filters increases the chances of creating a

systolic-friendlymodel.

Based on these insights, Eridanus prunes the

two-dimensional (2-D) matrix operand of a

matrix-matrix multiplication to capture the cor-

relation among all the filters and to extract

locally-dense blocks, the widths of which match

the width of the target systolic array. We evalu-

ate the accuracy, performance, and energy effi-

ciency of Eridanus by pruning and training

LeNet, CifarNet, and VGG16. We prune the mod-

els using Eridanus as well as the state-of-the-art

structured pruning algorithms, and run the infer-

ence of all the pruned DNNs on systolic arrays.

MOTIVATION AND BACKGROUND
Systolic arrays with attractive advantages,

such as a high degree of concurrent processing

through a dataflow architecture, have become a

key core of the hardware-accelerators for DNN8

acceleration (e.g., TPU). A majority of computa-

tions in a DNN is done within the convolutional

layers, the computation of which can be viewed as

a matrix-matrix multiplication, or a general matrix

multiply (GEMM) operation5;8;9 that have straight-

forward systolic implementations—while this

paper focuses on direct convolution implementa-

tions, we can extend this study to Winograd- and

Table 1. The impact of pruning granularity on inference using systolic arrays.

September/October 2019 47

FFT-based approaches10, which are only beneficial

for small kernels, with batched GEMMapproach11.

Convolving a 3-D input of size WxHxC (C: chan-

nels)withK filters of sizeFxFxC (i.e., a 4-Dweight

matrix of size FxFxCxK) results in an output of

size WxHxK (assuming the same padding). The

equivalent matrix-matrix multiplication multiples

the equivalent 2-D weight matrix of sizeKxF 2C by

the equivalent 2-D inputmatrix of sizeF 2CxWH as

follows:

WKxF2C � IF2CxWH ¼ OKxWH: (1)

Need for a Locally-Dense Model

Pruning is a common practice that reduces

the computations and/or storage overhead of

DNN models,1 but makes them sparse. Sparse

matrices, represented in formats, such as a com-

pressed sparse row (CSR), necessitate indirect

memory accesses and additional meta-data proc-

essing that limit effective utilization of systolic

arrays. To clarify, Figure 1 compares using a 2�3

systolic array for first, multiplying a dense input

matrix and a sparse weight matrix represented in

CSR format (option A); versus second,multiplying

the same dense input matrix and the locally-

dense weight matrix pruned by an ideal struc-

tured pruning algorithm suited for systolic archi-

tecture (option B). Option A requires accessing

extra meta data and reassembling a row before

pushing it to systolic arrays, which has the fol-

lowing consequences: first, the number of cycles

is defined by the number of rows (in the worst

case) of the sparse matrix. Even if the hardware

can skip zero rows, in the worst case, the nonzero

values could be spread over all the rows. Second,

at least one indexed read (the column index)

per nonzero value causes inefficient memory

accesses. Third, the compute units of the systolic

array are poorly utilized (e.g., 28% on average). In

contrast, in option B, the rows of the locally-

dense weight matrix are streamed to the systolic

array, without readingmeta data. As a result, mul-

tiplicationsmaximizes bandwidth utilizationwith

less hardware complexity.

Prior Structured Pruning Work

As the “Need for a Locally-Dense Model”

section showed, a structured pruning that creates

a locally-dense model is beneficial to implement

DNN inference on systolic arrays. We review

the prior structured pruning algorithms and

explains why they are not right solutions for sys-

tolic arrays. Structured sparsity learning5 formu-

lates shape-wise pruning as well as pruning in the

granularity of kernel, filter, channel, and layer,

and reported more than 3� speedups on CPUs

and GPUs for the GEMMoperations of CNNswhile

sustaining accuracy. Other efforts7;3;2;6 have

studied filter-wise pruning by applying various

implementation techniques. Examples of filter-

wise pruning are pruning the model based on the

global rescaling of a criterion (e.g., the mean,

standard deviation) for all layers6, or selecting

Figure 1. Comparing the execution of a matrix-matrix multiplication using a systolic array when one operand

is a dense matrix and the other operand is: (a) a sparse matrix and (b) a locally-dense sparse matrix. See the

details of microarchitecture in the “Microarchitecture” section.

Machine Learning Acceleration

48 IEEE Micro

close-to-zero weights based on the smallest sum

of absolute values7. In another work, Scalpel3

implements filter-wise pruning for hardware with

high parallelism (e.g., GPU), weight grouping for

single instruction, multiple data (SIMD), and a

combination of both for hardware with moderate

parallelism (e.g., CPUs). For efficient systolic

implementations of sparse CNNs, column-

combining approach8 prunes all weights on

conflicting rows for a selected set of columns

except the onewith the largest magnitude.

Table 1 evaluates using the prior pruning

methods for systolic arrays. While element-wise

pruning does not guarantee any spatial locality,

vector-, and kernel-wise pruning, for example,

do not capture the spatial locality, required by

systolic arrays. Thus, not all the compute units of

a systolic array are active during inference (see

Figure 1). The storage overhead and indexing com-

plexity that are defined by the granularity of prun-

ing, is low (low is better) for kernel-, filer-, and

channel-wise pruning. On the other hand, the

opportunity of concurrency and data reuse are

defined by the shape of the pruning granularity.

For instance, row-wise proximity offers higher con-

currency, whereas column-wise proximity cap-

tures more data-reuse patterns in systolic arrays.

Although kernel-, filter-, and channel-wise pruning

methods offer high level of concurrency, they

might not match the concurrency required by the

algorithm. Finally, since none of the pruning meth-

ods have the same granularity width as a systolic

array has, they all require some sort of buffering/

caching mechanisms to enable efficient streaming

from memory. In addition to such a hardware

complexity, ensuring correct timing to supply

data frommemory to the compute units of systolic

arrays requires complex indexing hardware when

the granularity of pruning is small. Note that,

according to how the compiler orders the ele-

ments of weight matrices, the listed granularities

in Table 1 could be inferred as similar implementa-

tions, but they still do not capture the specific

structured pruning, required by systolic arrays.

Challenges

Despite the advantages of the prior structured

pruning algorithms for CPUs and GPUs, the follow-

ing challenges exist for implementing DNN infer-

ence on systolic arrays. First, the structured

pruning methods help in reducing the number

of operations and memory footprint. However,

such optimizations alone are insufficient to

exploit the highly concurrent, synchronous, and

rhythmic flow of data from memory through the

systolic array. In other words, systolic arrays

require optimization for data streaming. Further,

a pruning algorithm for other concurrent hard-

ware (e.g., SIMD) is not applicable for systolic

arrays because they do not capture dependencies

in data to satisfy the data reuse patterns of systolic

arrays. The second challenge is that computation

results of pruned model should be compatible

with the streaming memory interface for eliminat-

ing extra buffering/caching. The storage adja-

cency of data resulting from algorithm-defined

granularity (e.g., kernel, filter) does not match the

data organizations necessary to directly stream

the interacting data flows to the systolic array.

ERIDANUS
To efficiently use systolic arrays for multiply-

ing the two 2-D matrices in (1), we propose Erida-

nus. Eridanus is an approach to structured

pruning that organizes the weight matrix such

that the nonzero values are placed in close prox-

imity in a manner that their computations are

related. Eridanus enables streaming of locally-

dense matrix from memory and exploits the dis-

tinctive data reuse patterns and fine-grained

concurrency in systolic arrays.

Pruning Algorithm

In contrast to other pruning algorithms, instead

of the individual filters, Eridanus examines and

prunes the flattened weight matrix by extracting

the potential nonzero blocks, the widths of which

are matched with the width of the target systolic

array. The blocks are created by first, hypotheti-

cally splitting theweightmatrix intoF 2C=v chunks

(F 2C: the common axis of input and weight matrix,

v: the width of systolic array), and second, extract-

ing the nonzero blocks in each chuck. While the

widths of the blocks must match the widths of the

systolic arrays to guarantee the correctness of

multiplications, their length could be arbitrary.

However, to reduce the complexity of the algo-

rithm, we fix the length too. Based on trials, we

choose eight as the length, which offers the best

tradeoff between sparsity of blocks and storage

overhead. Once the blocks are extracted, the adja-

cent ones are concatenated and stored as a single

block by assigning it a single index (i.e., the column

index of the first block) and a single length.

September/October 2019 49

Algorithm 112 illustrates the pruning algo-

rithm used in Eridanus, the input parameters

of which are the weight matrix W , threshold

u, length of the window l (a hyperparameter),

and width of the systolic array v. The width

of the window is fixed and is equal to v. The

weight matrix is either the flattened version of

the weight matrix in a convolution layer or

the 2-D weight matrix itself in a fully-con-

nected layer. During pruning, a window of size

v� l slides over W . If the average value of the

window (Line 3) is smaller than u, the block

corresponding to that window is set to zero

(Line 3). During retraining, by increasing u in

later epochs, the algorithm maintains the

accuracy and convergence. In other words,

the threshold of the average values for choos-

ing/pruning the zero blocks are gradually

increased with training epochs.

As Algorithm 1 does not change the size of

the common axis of the operands (i.e., F 2C),

it has the following benefits: first, the input

matrix does not require modifications, and

second, both the pruned weight matrix and

the dense input matrix can either be streamed

through the systolic array or be stationary

during the multiplication. Therefore, based on

the relative size of the matrices at each layer,

we dynamically swap the role of the two

matrices (i.e., the larger is streamed and the

smaller is stationary).

Algorithm 1. Pruning

1: function Prune(Whxw; u; l;v)

Whxw: Weight matrix, u: Threshold,

v: Systolic array width l: Window length

2: ih :¼ 0; iw :¼ 0; avg :¼ 0
3: while iw < w do

4: avg = BlockAvgð½iw; ih�; ½iw þ v� 1; ih þ l�
1�Þ

5: if avg < u then

6: W ½iw : iw þ v� 1; ih : ih þ l� 1� ¼ 0
7: ih ¼ ih þ l
8: else

9: ih ¼ ih þ 1
10: end if

11: if ih > h� l then
12: ih ¼ 0
13: iw ¼ iw þ v

14: end if

15: end while

16: end function

Microarchitecture
SYSTOLIC ENGINE We use a weight-stationary sys-

tolic array with one streaming (i.e., R1s in

Figure 2) and one stationary (i.e., R2s in Figure 2)

input. The streaming input registers are con-

nected in a column. At each cycle, their contents

shift one row down ❶. The stationary registers

are also connected to simplify the interconnec-

tion between the array and memory. The input

from memory is connected to the first row. The

stationary values swing through registers until

they reach their destination register, where they

settle. The streaming registers and the stationary

registers share memory bandwidth to obtain

their contents. At each cycle, all multipliers are

active. The outputs of a row are summed through

an adder tree to contribute to create an element

of the output. The number of adder trees (i.e., the

width of the systolic array) defines the number of

output elements generated at each cycle.

The width of the systolic array defines the

degree of concurrency. Thus, normally, we want

the width to match the width of the 2-D-weight

matrix to maximize the fine-grained parallelism.

However, to be flexible and scalable, we prefer to

employ several narrow systolic arrays, instead of

one large array, so that based on the size of a

weight matrix, we assign as many narrow systolic

arrays as required. The depth of the systolic

array directly impacts the data-reuse rate. Thus,

a deeper systolic array is preferred. However,

pruning causes variations in the length of the

locally-dense blocks, which are going to stay in

the systolic array. Therefore, while choosing a

large depth for the systolic array leads to under-

utilization of the systolic array, a very small

depth prevents achieving peak throughput. As a

result, to optimize for the common case, we

choose a depth of 64.

MEMORY MANAGEMENT To maximize bandwidth

utilization and avoid random memory accesses,

we map locally-dense weights and the inputs cor-

responding to sequential multiplications in the

sequential addresses of memory. Therefore, for

each layer, the stationary operand is streamed, fol-

lowed by the streaming operand. The type identi-

fier (that indicates stationary and streaming data)

is used to direct data to the right registers. The

pruned weight of each layer is stored as locally-

dense blocks. The header of each block includes

the index, the length, the type of data, and an

Machine Learning Acceleration

50 IEEE Micro

offset ❷. When the width of the stationary oper-

and matrix is larger than the depth of the systolic

array, we split a multiplication into submultiplica-

tions. The offset is the index of the submultiplica-

tions and is used to generate the column-index of

the output elements. The memory interface reads

from memory and directs data and its type to the

systolic array, and sends the index, length, and off-

set of blocks to the index generator❸.

INDEXING In multiplying WK�F2CxIF2C�WH , the

column and row indices of the output elements

are defined by the column index of I and the row

index of W , respectively. Therefore, the index of

an adder tree simply indicates the column index

of the output elements—the offset will also be

added to it if the matrix does not fit in the sys-

tolic array. This is implemented by the incre-

ment units between the column indices ❹. The

block index and length indicate the row within

the selected column of the output. As the row

indices of the output elements corresponding to

a single block are sequential, the row indices are

reused by shifting them down❺.

HANDLING LARGER MATRICES When F 2C > v,

more than one systolic array will contribute to

calculating an element of the output. As a result,

the partial results will have to be aggregated in

the final destination (i.e., based on themapping of

the next layer of DNN across the systolic array).

The mapping of the submultiplications to the sys-

tolic arrays is programmed in a look-up table

(LUT) ❻. Once the column and row indices are

assigned to the outputs of the adder trees, based

on the LUT, they will be directed to other systolic

arrays or to the aggregation engine of the current

one. The aggregation engine ❼ sums the partial

results, and if the current partial result is the last

portion of the output element, it applies the acti-

vation function to the final result and sends it to

the memory interface to be written in memory. If

an element of output is not local, it is directed to

the network interface. We use a multidrop

express channels (MECS) topology, a bandwidth-

efficient interconnection network. The elements

with the same destination, which also have com-

mon row index, are packetized together. When a

packet is received, it is de-packetized and sent to

the aggregation engine.

Locally-Dense Matrix Multiplication Using

Systolic Arrays

To illustrate the functionality of the systolic

array, when F 2C > v, Figure 3 shows the steps

of multiplying matrix W and I and creating out-

put matrix O, in which F 2C ¼ 9 and the size of

the systolic array is 3� 3. Since F 2C > v (i.e.,

9 > 3), we need to split the main multiplication

into three submultiplications [Figure 3(a)].

Depending on the number of available systolic

arrays, the submultiplications can be performed

sequentially or in parallel. Figure 3(b)–(d),

respectively, illustrate using one, two, and three

systolic arrays for performing the three submul-

tiplication. During each submultiplication, a

partition of I is stationary in the systolic array.

Before a submultiplication starts, its corre-

sponding stationary operand is loaded to the

systolic array. Because of the arrangement of

the registers (explained in the “Systolic Engine”

section), loading the stationary operand takes

three cycles (i.e., in general, equal to the depth

of the systolic array). Once the stationary oper-

and is settled, the blocks of W sequentially

pass through the systolic array and generate

the elements of output. Since in this example,

the lengths of the locally-dense blocks are

Figure 2. Overview of the systolic-based microarchitecture, used in Eridanus.

September/October 2019 51

varied, the execution time is defined by the lon-

gest submultiplication, and hence, using two or

three systolic arrays result in almost similar

latencies.

EVALUATION

Experimental Setup

We use Tensorflow for iteratively training and

pruning three DNNs including VGG16, CifarNet,

and LeNet on ImageNet, Cifar10, and MNIST

datasets, respectively. For VGG16, we use a pre-

trained model, whereas for LeNet and CifarNet,

which are smaller, we start training from

scratch. We compare the performance of Erida-

nus against state-of-the-art structured pruning

algorithms2–7 with granularities of shape, vector,

kernel, filter, and channel, as well as element-

wise pruning1 (see Table 1). The accuracy of the

models pruned by various methods is the same,

whereas their sparsity vary. We run the infer-

ence of all pruned models on the systolic-based

engine. Seeking fair comparison, each baseline

pruning method is compiled based on its best

format. When required, additional buffering/

caching mechanisms are implemented. The

pruned models are used as the input to our in-

house cycle-level simulator, which models the

microarchitecture shown in Figure 2. We use the

version 1 of high bandwidth memory (HBM) as

the memory connected to 8� 64 systolic arrays.

We estimate the power consumption of the com-

pute units by using Kitfox1.1 library at 16-nm

technology and McPAT model. We assume the

access energy per bit of 6 pJ/bit for HBM. We

connect eight of the modules shown in Figure 2

in a MECS topology. On an average, a packet con-

sumes 0.52 nJ energy at routers and links. The

latency of each multiplier is three cycles @2 GHz.

We process batches of size 16. By choosing a rel-

atively small batch size, we neither increase the

number of reloads at mid-size layers, nor destroy

the compute utilization at fully-connected layers.

Accuracy

Figure 4(a) illustrates the top-1 accuracy of

the CifarNet and VGG16 pruned by Eridanus, nor-

malized to the accuracy of the unpruned model,

along with the average percentage of zero blocks.

For CifarNet [Figure 4(a)], pruning is applied

between steps 20k and 100k. For VGG16, since we

use a pretrained model, we start pruning from

the beginning (i.e., step 1 to 10k). As Figure 4(a)

shows, during pruning, the percentage of zero

blocks increases. However, since the distribution

of zero blocks and/or their densities keep chang-

ing, the accuracy oscillates. After pruning stops,

training continues to maximize the accuracy by

adjusting the values of nonzero blocks. For LeNet,

CifarNet, and VGG16, we prune 75%, 79.8%, and

42% of models and, respectively, achieve 99%,

93.6%, and 70% top-1 accuracy on validation set.

The top-1 accuracy of unpruned models are 99%

for LeNet, 94% for CifarNet, and 71.5% for VGG-16.

Note that parameters, such as threshold (u in

Algorithm 1), the start and the end steps, the

Figure 3. Example of multiplying a locally-dense matrixW8�9 and a dense input matrix I9�3, by using 3� 3

systolic arrays. (a) Since the common axis ofW8x9 and I9�3 (i.e., 9) is larger than the width of systolic array, we

perform three submultiplications. We compare the execution time when using (b) one systolic array, in which

three submultiplications are sequential and are done in 22 cycles, (c) two systolic arrays, in whichW 1xI1 is

performed in parallel withW 2xI2 andW 3xI3 and result in 13 cycles, and (d) three systolic arrays to perform all

three submultiplications in parallel in 11 cycles.

Machine Learning Acceleration

52 IEEE Micro

length of the sliding window, and the maximum

desirable sparsity, impact the tradeoff between

accuracy and zero distribution.

Performance
THROUGHPUT ANDMEMORYBANDWIDTHUTILIZATION

We evaluate the speed of inference on systolic

arrays by the relevant metric of throughput,

rather than inference time. Parameters, such as

the level of concurrency, the number of times

we need to load the stationary operands, the

additional caching/buffering/decoding for dire-

cting data from memory into the systolic array,

and memory bandwidth utilization impact thro-

ughput. Bandwidth utilization depends on the

number of indirect memory accesses, and den-

sity of the models. As a result, the unpruned (i.e.,

dense) model is expected to have the highest

throughput and bandwidth utilization comparing

to structured models. Figure 4(b) shows the

throughput and bandwidth utilization of DNN

inference on systolic arrays for the models

pruned with various granularities. The trend of

the overall performance is similar to that of the

throughput since the amount of computation

remains similar.

As Figure 4(b) illustrates, the bandwidth

utilization and throughput of Eridanus, which

optimizes all the effective parameters (listed in

Table 1) together, is very similar to those of

the unpruned models. The other structured

pruning approaches, however, are not as effec-

tive as Eridanus, because they are not jointly

optimized for capturing the data-reuse pat-

terns and concurrency offered by systolic

array, and hence, incur some overheads. For

instance, kernel-wise captures less data-reuse

patterns, whereas it enables a high level of par-

allelism. On the other hand, compared to other

baseline structured models, shape-wise and

channel-wise yield a better performance on

systolic arrays, because they can capture more

data-reuse patterns. However, they limit the

level of concurrency. Although the number of

operations in the models, created by Eridanus

could be more than those in irregular sparse

models (e.g., element-wise), the locality in the

structured model of Eridanus leads to lower

latency. As a result, the combination of fast

computation and high bandwidth utilization

leads Eridanus to work more closely to the

peak throughput.

POWER EFFICIENCY The power consumption of

running inference on systolic array is defined by

the number of memory accesses as well as

the number of operations. Comparing to other

pruning approaches, Eridanus creates a model

that requires the lowest number of memory

accesses. However, the effect of pruning algo-

rithms on the number of computations is the

opposite. Comparing to element-wise pruning,

the structured pruning approaches may require

more number of operations (i.e., because of more

number of nonzero values). On the other hand,

the systolic array executes spatial operations

more quickly than sparse operations. As a result,

the ratio of memory-access reduction to com-

pute-density reduction is the key factor in defin-

ing the power efficiency. Figure 4(c) illustrates

the combined effect of the number of memory

accesses and computation density, on power effi-

ciency. As the figure shows, for Eridanus, the

reduction in memory accesses carries more

weight and helps achieve higher power efficiency.

CONCLUSION
This article proposed Eridanus, a novel

approach to structured pruning of DNNs based

on the requirements of systolic arrays. Eridanus

emphasized the importance of the distribution

Figure 4. (a) The accuracy and the percentage of zero blocks for CifarNet (pruned between steps 20k and 100k) and

VGG16 (pruned between steps 1 and 10k). (b) The comparison of throughput and bandwidth utilization. (c) The power

efficiency of three DNN models pruned by various structured techniques.

September/October 2019 53

of nonzero values in sparse DNN models when

we implement them on systolic arrays.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the sup-

port of the National Science Foundation NSF CCF

under Grant 1533767.

& REFERENCES

1. S. Han, H. Mao, and W. J. Dally, “Deep compression:

Compressing deep neural networks with pruning,

trained quantization and Huffman coding,” 2015,

arXiv:1510.00149.

2. H. Mao et al., “Exploring the regularity of sparse

structure in convolutional neural networks,” 2017,

arXiv:1705.08922.

3. J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and

S.Mahlke, “Scalpel: CustomizingDNNpruning to the

underlying hardware parallelism,”ACMSIGARCH

Comput. Archit. News, vol. 45, no. 2, pp. 548–560, 2017.

4. S. Anwar et al., “Structured pruning of deep CNNs,” J.

Emerg. Technol. Comput. Syst., vol. 13, no. 3, 2017,

Art. no. 32.

5. W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li,

“Learning structured sparsity in deep neural

networks,” in Proc. Adv. Neural Inf. Process. Syst.,

2016, pp. 2074–2082.

6. P. Molchanov et al., “Pruning convolutional neural

networks for resource efficient inference,” 2016,

arXiv:1611.06440.

7. H. Li et al., “Pruning filters for efficient convnets,”

2016, arXiv:1608.08710.

8. H. Kung, B. McDanel, and S. Q. Zhang, “Packing

sparse convolutional neural networks for efficient

systolic array implementations: Column combining

under joint optimization,” in Proc. 24th Int. Conf.

Archit. Support Program. Lang. Operating Syst.,

2019, pp. 821–834.

9. S. Chetlur et al., “cuDNN: Efficient primitives for deep

learning,” 2014, arXiv:1410.0759.

10. A. Lavin and S. Gray, “Fast algorithms for convolutional

neural networks,” inProc. IEEEConf. Comput. Vis.

Pattern Recognit., 2016, pp. 4013–4021.

11. U. Koster and S. Gray, “Going beyond full utilization:

The inside scoop on Nervana’s Winograd kernels,”

2019. Accessed: Apr. 16, 2019. [Online]. Available:

www.intel.ai/winograd-2/#gs.61t136

12. B. Asgari, R. Hadidi, H. Kim, and S. Yalamanchili,

“LODESTAR: Creating locally-dense CNNs for efficient

inference on systolic arrays,” Proc. 56th Annu. Des.

Autom. Conf., 2019, Art. no. 233.

Bahar Asgari is working toward a PhD at the

School of Electrical and Computer Engineering,

Georgia Institute of Technology, and is a member of

the Computer Architecture and System Laboratory.

As a graduate research assistant under the supervi-

sion of Prof. Sudhakar Yalamanchili and Prof. Hye-

soon Kim, she conducts research in the field of

computer architecture. Her research interests

include but are not limited to accelerating sparse

problems and deep neural networks, and scalable

memory systems. Contact her at: bahar.asgari@ga-

tech.edu.

RamyadHadidi is currently working toward a PhD in

computer science under the supervision of Prof.

Hyesoon Kim at Georgia Institute of Technology. He

received the bachelor’s degree in electrical engineer-

ing from Sharif University of Technology and the

master’s degree in computer science at Georgia Insti-

tute of Technology. His research interests include

but are not limited to computer architecture, edge

computing, and machine learning. Contact him at:

rhadidi@gatech.edu.

Hyesoon Kim is an associate professor with the

School of Computer Science, Georgia Institute of

Technology. Her research areas include the intersec-

tion of computer architectures and compilers, with an

emphasis on heterogeneous architectures, such as

GPUs and accelerators. She has a PhD in electrical

and computer engineering from theUniversity of Texas

at Austin. She is a member of the IEEE. Contact her at:

hyesoon.kim@gatech.edu.

Sudhakar Yalamanchili was a Regents Professor

and Joseph M. Pettit Professor of computer engineer-

ing with the School of Electrical and Computer Engi-

neering, Georgia Institute of Technology. He has a BE

in electronics from Bangalore University, India, and a

PhD in electrical and computer engineering from the

University of Texas at Austin. Prior to joining Georgia

Tech in 1989, he was a Senior and then Principal

Research Scientist at the Honeywell Systems and

Research Center in Minneapolis. He is a member

of the ACM, and an IEEE Fellow. Contact him at:

sudha@gatech.edu.

Machine Learning Acceleration

54 IEEE Micro

www.intel.ai/winograd-2/#gs.61t136

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

