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Abstract—The fundamental building block of many algorithms
such as data analytics and neural networks is matrix multipli-
cation. Besides its popularity, matrix multiplication is one of the
rare algebraic computations that demand high data reuse rate.
During the past decades, systolic arrays have been proposed as a
low-cost solution for implementing high data reuse, and they
have seen a resurgence of interest recently. Particularly, two
categories of systolic arrays have been proposed, both of which
are made of connected multiply-and-accumulate (MAC) units:
non-stationary and stationary architectures. While in the non-
stationary architecture both operands of the matrix multiplica-
tion flow through the MAC units, in the stationary architecture,
only one of them flows. Regardless of their advantages, their
common challenges are that they have high latency and are
not scalable. In other words, latency increases linearly when
the input size grows. Particularly, these are crucial challenges
for applications of large matrix multiplication (e.g., deep neural
networks (DNNs)) in the edge, in which latency must be optimized
not throughput. To resolve this challenge, we propose multiplying
matrices efficiently in a scalable systolic architecture (Meissa).
Meissa is a novel stationary systolic array that, unlike prior work,
separates multipliers from the adders rather than combining
them in a unified array of MACs. Such an interconnection enables
Meissa to sustain a sublinear growing rate in latency with scaling
problem size. Our experimental results on a ZYNQ XC7Z020
FPGA show that Meissa executes the single-batch inference of
DNNs 1.99× and 1.83× as fast as the prior non-stationary and
stationary systolic arrays, respectively.

I. INTRODUCTION

Matrix multiplication is a fundamental computation in linear
algebra, with numerous applications in mathematics, statistics,
physics, economics, computer science, and artificial intel-
ligence [1]. More recently, the advancements of computer
vision and deep neural networks (DNN) [2] have increased
the demand of matrix multiplication, particularly on large
operands. The key computations of DNNs are convolution
and fully-connected layers [3]–[6] that can be implemented
as matrix multiplication [7], [8]. The increasing demand for
matrix multiplication and the need to execute it quickly
have motivated several proposals that go beyond software
optimizations to design specialized hardware, among which
systolic arrays have been a successful attempt [9]–[15]. The
key reason for such a success is the unique requirement of data
reuse in matrix multiplication, which is efficiently satisfied by
the unique structure of systolic arrays.

Since 1979 [16], several studies have explored different
implementations of systolic arrays for various applications.
Many of these studies and industry products target matrix mul-
tiplication [9]–[15], [17], [18] to accelerate machine learning

algorithms such as computer vision using neural networks.
Regardless of the differences in systolic-based matrix multipli-
cations, their skeleton can be categorized into two groups: non-
stationary and stationary systolic arrays. Both groups share
the principle of flowing data through an array of computation
logic. Unlike non-stationary systolic arrays, in which both
inputs flow, in stationary systolic arrays, one of the inputs
stays in the array during the execution time. The stationary
approach is most efficient for architectures with high-capacity
memory elements [19].

The two mentioned categories of systolic arrays are ben-
eficial for high throughput [13], [20]–[22], which is crucial
in data centers where multiple inputs are available at once
and processed together. However, for edge implementation of
matrix multiplication, latency is more important than through-
put [23] for two reasons. The first reason is strong real-time
constrains of in-the-edge systems. In many edge applications
such as computer vision in an autonomous drone (e.g., autel x-
star [24], DJI Mavic Air 2 [25] with a 240fps camera) order of
milliseconds improvements in single-batch inference matters.
Similarly, a self-driving car must detect objects quickly and
act promptly to prevent accidents. In such cases, the latency of
prior throughput-oriented systolic arrays is not sufficient. The
second reason and a motivation for not optimizing throughput
in edge is that unlike in data centers, only one input is available
at a time. Thus, we must process individual inputs as soon as
they arrive and aspire to reduce single-batch latency.

In aforementioned systolic arrays, latency grows linearly
with the size of inputs. Therefore, although for small prob-
lems slower execution of the prior systolic arrays could be
negligible, it creates a crucial performance bottleneck for
larger problem size. Given the growing size of the on-demand
applications of matrix multiplication (e.g., the size of DNNs),
the size of a problem (i.e., the size of matrices) must not
negatively impact latency. Additionally, scalability is more
challenging in the edge applications, in which the resources
to achieve desired performance are limited. The mentioned
challenges motivated us to optimize latency, which is inherent
to the dataflow architecture, whereas throughput that can be
improved artificially by adding more hardware units.

To utilize a given hardware budget to achieve lower la-
tency, our main observation is the following: since matrix
multiplication consists of multiplications and additions, and as
additions can be done in the order of log(n) rather than O(n)
(for n numbers), the overall latency can increase sublinearly
with the input size and thus the linear growth of latency in
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prior systolic arrays is not optimal. To improve latency, we
propose multiplying matrices efficiently in a scalable systolic
architecture (Meissa1). The key insight of Meissa is to use an
array of multipliers interconnected separately from the adders,
connected in a tree topology, which differs from prior systolic
architectures consisting of arrays of multiply-and-accumulate
(MAC). In fact, the insight of Meissa is neither just using the
well-established adder trees nor solely its systolic architecture.
It is indeed optimizing single-batch inference latency, by
integrating adder trees in a systolic dataflow architecture. In
summary, Meissa makes the following key contributions:
• It is the first scalable systolic-based matrix multiplier.
• It consists of a multiplier array connected to adder trees

for multiplying matrices quickly and energy efficiently.
• It uses a new interconnection and mechanism of flowing

data to reduce transferred data within the array.
• It streams the operands through the systolic array, as they

are in their original shapes; hence, unlike prior work, it
prevents additional steps and resources for preprocessing.

We implement Meissa on a ZYNQ XC7Z020 FPGA, using a
high-level synthesis (HLS) tool as a solution to prototype the
harmonic structures of systolic arrays. Our results show that
Meissa executes DNNs 1.99× and 1.83× as fast as the prior
non-stationary and stationary systolic arrays, respectively.

II. SYSTOLIC ARCHITECTURES & PRIOR WORK

Since 1979 [16] various architectures have been introduced
for systolic architectures [26], [27]. More recently, the advan-
tages of artificial intelligence and the need for massive parallel
matrix multiplication have motivated academia and industry
to rethink the systolic arrays [9]–[13], [15], [17], [18], [28].
Systolic arrays for matrix multiplication have also been imple-
mented by industry [13] in large data-center scales. Regardless
of the different implementations, the systolic-based matrix
multipliers used in prior studies can be categorized as non-
stationary and stationary, based on the way the operands of
the matrix multiplication are being handled during execution.
In the following, we explore both categories for performing:

An×m ×Bm×p = Cn×p. (1)

Non-stationary Systolic Array (NSA): The processing el-
ements (PEs) of this systolic architecture (e.g., [26], [27],
[29]) are multiply-and-accumulate (MAC) units. As its name
indicates, none of the inputs stay in the PEs during the
execution, and they pass through the PEs in two different
directions. Upon the arrival of new inputs, each PE multiplies
the two inputs coming from its neighbors and adds them to
the prior accumulated results. At the end of the execution,
each PE contains one element of the output matrix. Thus, the
appropriate size of the systolic array for implementing an NSA
for multiplying An×m and Bm×p is n × p (i.e., the size of
output matrix).

To guarantee the correctness of computations, the inputs
must arrive at each PE at the right time. To do this, the two

1Meissa is a multiple star in the constellation of Orion.

inputs are inserted into the array as shown in Figure 1a (a
simple example is presented in Figure 2 Section III). Since
both inputs are non-stationary, the multiplication starts as soon
as the first elements of the inputs arrive at a PE. Therefore,
no additional time needs to be spent on loading. To finish the
multiplication, all elements of both inputs must pass through
the PEs completely. If we define a time step as the time for an
input element to pass through a PE, the number of time steps
for multiplication using the NSA is

Tnsa
process = n+m+ p− 2, (2)

which is equal to the number of time steps to move a window
of size n×p over either one of the inputs of size n×(n+m−1)
or (m+ p− 1)× p, horizontally in A and vertically in B.

Once the multiplication is done, the outputs generated in
the PEs must be sent out. To do so, if the PEs use the same
output ports used for passing through B, the number of time
steps for offloading the outputs from the systolic array is

Tnsa
out = n+ p− 1. (3)

p−1 steps of reading the ready elements of the output is over-
lapped with the multiplication steps. Therefore, as Figure 1a
illustrates, the total time steps for multiplying An×m×Bm×p

using the NSAs is calculated as:

Tnsa
total = 2n+m+ p− 2. (4)

TPU-style Stationary Systolic Array (TSSA): A more pop-
ular type of systolic array for matrix multiplication is TSSA,
which is the architecture of the systolic array in TPU [13].
TSSA is also called weight stationary [30] or static systolic
arrays [31] and has been implemented for neural networks.
The PEs of a TSSA are MAC units, too. However, unlike
NSAs, the PEs keep one of the inputs in their registers and
instead pass through their outputs (see Figure 1b). As a result,
before starting the multiplications, one of the inputs (e.g.,
Bm×p) must be loaded to the registers of each PE. Besides,
the appropriate size of the systolic array for implementing a
TSSA, in which Bm×p stays in the PEs, would be m×p (i.e.,
the size of the matrix B). As Figure 1b shows, the number of
time steps to load B into the systolic array is

T tssa
load = m. (5)

Moreover, the number of steps for multiplying the matrices is

T tssa
process = n+m+ p− 2, (6)

which is the number of steps to move matrix A through the
systolic array horizontally. Similar to the NSA, all elements
of the output must be carried out even though they are being
created and passed through the PEs. Since the size of the
output matrix is n × p, the number of steps for offloading
the outputs from the systolic array is

T tssa
out = n+ p− 1. (7)

However, only one step of the offloading and the multiplication
is non-overlapping. Additionally, we can start the multiplica-
tion at the last step of loading. Thus, as Figure 1b shows, the
number of steps for An×m ×Bm×p with TSSA is

T tssa
total = n+ 2m+ p− 2. (8)
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Figure 1. Systolic Architectures for Multiplication: Comparing the overall scheme and the timeline of two popular systolic arrays and Meissa: (a) NSA,
(b) the TSSA, and (c) Meissa, our proposed scheme, introduced in Section III.

Key Challenge: Besides the success of NSA and TSSA
in providing massive parallelism for matrix multiplications,
they are not fast enough (in terms of latency) and, more
importantly, they both suffer from the common challenge of
scalability. To be specific, as Equations 4 and 8 illustrate, the
total time for multiplying two matrices directly depends on
(i.e., linearly changes with) the dimensions of the input sizes.
The main reason for this stems from the interconnection of
the PEs and the use of MACs. The similar connectivity in both
prior systolic arrays forces the reduction operation (i.e., adding
the results of multiplication) to be done as one operation
per cycle, which is not the fastest possible implementation.
Scalability is particularly important in DNNs, the sizes of
which have been growing. Besides the matrix multiplication
itself, a key operation in DNNs is convolution. To efficiently
use systolic arrays for performing convolution, converting
convolution to matrix multiplication is a common practice [7],
[8]. Convolving K filters of size F ×F ×C on an input size
of W ×H ×C results in an output of size W ×H ×K (for
simplicity, we assumed the same padding):

OK×WH = WK×FFC × IFFC×WH . (9)

III. MEISSA

Key Insight: This paper proposes Meissa, a scalable systolic
architecture for matrix multiplication. To provide scalability,
Meissa multiplies matrices such that the total processing time
has a sublinear relation with at least one dimension of the
input matrices. To do so, the key insight of Meissa is to
separate the multipliers from the adders and connect the
adders in a tree topology. As a result, the time to add the
results of multiplication is faster than that provided by the
ordinary MAC-based systolic arrays. Meissa is particularly
beneficial for the computation in DNNs because, while the
total processing time is linearly dependent on the non-growing
and smaller dimensions of the input matrices (i.e., W and H
in Equation 9), it sublinearly depends on their growing and
larger dimensions (i.e., FFC in Equation 9). After introducing
the microarchitecture of Meissa, we analyze time to load,
process, and offload, and use a simple example to clarify the
mechanism of Meissa and other systolic arrays.

Processing Mechanism: Similar to the TSSA, Meissa in-
cludes three phases of processing: load, process, and offload.
The load phase is similar to TSSA, as shown in Figure 1c.

Before the computation starts, matrix Bm×p is inserted into
the systolic array. Therefore, the number of steps to load
depends on the dimension of B, or

Tmeissa
load = m. (10)

Once matrix B is loaded, multiplying A×B starts by passing
A through the PEs. Later, the output of the multiplication will
be added in adder trees rather than in the MAC units, for which
matrix A is not inserted diagonally (unlike the TSSA). Since
A is passing matrix B through their common dimension (i.e.,
m), the number of steps to process the inputs depends on the
other two dimensions and is calculated as

Tmeissa
process = n+ p− 1. (11)

To simplify the comparison, we assume that, for Meissa, the
process phase includes only the multiplication, and the add
operations are calculated in the offloading phase. Since the
adders are connected in a balanced tree topology, the time to
read the output matrix from the systolic array is

Tmeissa
out = n+ log(m) + p− 1. (12)

Similar to the other systolic arrays, these phases (i.e., load,
process, and offload) can be overlapped. The overlap between
the load and process phases is one step. Between the process
and offload phases, all the steps are overlapped except for the
last log(m) steps for draining the adder tree (see Figure 1c).
As a result, the total number of steps for An×m×Bm×p when
using Meissa systolic arrays is

Tmeissa
total = n+m+ log(m) + p− 2. (13)

Figure 2 provides an example to clarify Equations 4, 8,
and 13. Here, since n = m = p = 2, the size of the
MAC arrays, in NSA (Figure 2a), TSSA (Figure 2b), and the
multiplier array of Meissa (Figure 2c), are all the same as 2×2.
As Figure 2a shows, at each step, each MAC unit of the NSA
multiplies its inputs together and accumulates the result to its
stored value. The TSSA (Figure 2b), on the other hand, first
loads B and then does a similar process as NSA. However,
each MAC of TSSA passes its outcome to one of its neighbors
(i.e., downstream). Therefore, in this example, both NSA and
TSSA take the same time steps. As Figure 2c shows, after
loading B, Meissa starts inserting A, and the adder trees start
producing the output matrix as soon as their inputs arrive.
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Figure 2. An example of process: The time steps required for multiplying
two 2×2 matrices using (a) NSA, (b) TSSA, and (c) Meissa. The time steps
include load (if any), process, and out (i.e., offload).

IV. MICROARCHITECTURE

Figure 3 shows PEs and the connections between the PEs
for Meissa, and the two MAC-based systolic arrays, NSA and
TSSA. The PEs of all three designs include two input registers
(i.e., R1 and R2), and an output register (i.e., R3). Their
differences are in where the adders are located, what data
pass through, and in which direction data flows. Figure 3a
illustrates the microarchitecture of Meissa consisting of an
array of multipliers each row of which is connected to an
adder tree. In Meissa (Figure 3a) and TSSA (Figure 3b right)
each multiplier has one stationary (R2) and one streaming
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Figure 3. The Microarchitecture of Systolic Arrays: (a) Meissa, made of an
array of multipliers, connected to adder trees, and (b) the popular MAC-based
schemes, which are the common microarchitecture in NSA and TSSA.

(R1) input. Therefore, during the process phase, an operand
stays in R2s and the other operand passes through the R1s,
whereas in NSA (Figure 3b left) both inputs are streaming.
Both TSSA and NSA accumulate the partial sums in their PEs.
Their difference is that in TSSA, each PE adds the output of
MAC to the partial results coming from the upstream, whereas
in NSA, each PE adds its output of MAC to its own previously
accumulated partial results. In NSA, the up-down stream is
used for either streaming B or for offloading the final results. In
TSSA, the up-down stream is used to either load the stationary
operand (B), or to pass the partial results for accumulation.

At each time step, all multipliers of Meissa are active and
process their inputs. R1s with streaming data are connected in
a row within the array such that at each cycle their contents
shift one column to right. To reduce the connections, only
the first row/column of Meissa and TSSA is connected to the
memory. Moreover, to further reduce the connections, each PE
of the first column of Meissa and TSSA can only connect to
one data stream line so that operands A and B use a shared link
and based on the phase (i.e., load or process) the streaming
data could be chosen to be loaded in R2s or be used in
multiplication through R1. During the load phase, stationary
operands are poured into connected registers in a column to
fill them by using the connection among them. In such a case,
however, the load and process phases cannot overlap.

V. SCALABILITY ANALYSIS

This section analyzes the performance of NSA, TSSA, and
Meissa and explores their scalability. First, we summarize the
characteristics of the three systolic architectures in Table I. The
table lists the appropriate shape for the systolic arrays required
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Table I
A SUMMARY OF THE SYSTOLIC-BASED MATRIX MULTIPLICATIONS. LEFT-TO-RIGHT AND UP-TO-DOWN INDICATE DATA FLOWING DURING PROCESSING.

Systolic Type Shape PE type Left to Right Up to Down Stored Tload Tprocess Tout Ttotal

NSA n× p MAC matrix An×m matrix Bm×p partial output 0 n+m+ p− 2 n+ p− 1 2n+m+ p− 2

TSSA m× p MAC matrix An×m partial output matrix Bm×p m n+m+ p− 2 n+ p− 1 n+ 2m+ p− 2

Meissa m× p multipliers matrix An×m nothing matrix Bm×p m n+ p− 1 n+ log(m) n+m+ log(m)
& adder trees +p− 1 +p− 2

to multiply matrices of size n×m and m×p without splitting
neither their inputs nor their outputs. Since each PE of the two
common systolic arrays includes one multiplier and one adder,
in total, the NSA and TSSA consist of np and mp multipliers
and adders, respectively. The shape for Meissa indicates the
size of the multiplier array. The m × p multiplier array of
Meissa is connected to p adder trees with m leaves. Therefore,
Meissa consists of mp multipliers and p(m−1) adders. Unlike
the MAC units in NSA and TSSA, the multipliers of Meissa
pass through the intermediate data in only one direction. As
a result, only during the load phase does data pass through
from up to down. The last four columns of Table I combine
Equations 2 to 13. To analyze the impact of scaling the input
size on performance, we vary one dimension of the inputs at
a time and study the total time steps of multiplication together
with the number of required PEs, which counts multipliers and
adders separately.

As n increases (Figure 4a), time steps increase for all three
systolic arrays. While for n < 128 the NSA works faster
than the TSSA, it is the opposite for n > 128. However, in
both cases, Meissa is the fastest. Thus, for large matrices, the
NSA is not suggested. Besides, its number of required PEs
keeps increasing as the input size scales up (purple line in
Figure 4a). As Figure 4b illustrates, increasing m has a similar
impact on the total time as increasing n does, whereas when
m > 128, the TSSA works more slowly than the NSA, and
Meissa is still the fastest for all ms. However, other factors
must also be considered. First, although compared to Meissa,
the NSA requires fewer PEs to deliver the same performance,
the NSA is not flexible for splitting – which is necessary
for m > 128 where PEs may not fit into an FPGA. This
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Figure 4. Total Time Steps for Matrix Multiplication: Analyzing the
performance (Ttotal) of three systolic arrays when (a) n varies from 2 to
2048, m = 128, and p = 128, (b) m varies from 2 to 2048, n = 128, and
p = 128, and (c) p varies from 2 to 2048, n = 128, m = 128.

is because the outputs of NSA are stored within the cells
and must be drained after each partial multiplication, which
limits pipelining. Moreover, we must consider the trend of
scaling m together with either n or p. The reason is that in
a DNN, C and K (see Equation 9) scale accordingly. While
C corresponds to m, K may correspond to n or p. Either
way, our choice will lead to a decision that Meissa is faster
and requires a decent number of PEs. Finally, increasing p
(Figure 4c) has a similar impact on all three systolic arrays.
Therefore, for any p size, choosing Meissa is beneficial in
terms of performance and the required PEs to deliver a given
performance. In summary, in Figure 4b, the latency of Meissa
grows sublinearly, in Figure 4a and 4c, the latency of all
designs grow linearly and, in all cases, Meissa is the fastest
(has the lowest latency).

VI. IMPLEMENTATION

We implement NSA, TSSA, and Meissa using Xilinx Vi-
vado HLS and relevant #pragmas as hints to describe desired
microarchitectures. We validate systolic-array generation by
using the Analysis tool of Vivado HLS. The top function
of all three systolic arrays is similar as shown in Figure 5a. The
top function sequentially streams the operands of the matrix
multiplications (A and B) and iteratively calls the specific
systolic-based multipliers, the implementations of which are
explained in the following. We partition the buffers that
include the operands to enable parallel accesses to BRAM.
For streaming the operands, partitioning through only one
dimension is sufficient.

For NSA, A and B are parallelograms, which can either be
streamed in this shape or padded in the top function. Seeking
fair comparison, we choose the former to eliminate the extra
steps for reshaping in FPGA, which negatively impacts the
performance of our peers. Since in the NSA the elements
of the output are created and stored in the MAC units, we
simply generate the array using a nested loop of MACs (line 5
Figure 5b), the output of which is fed back to the inputs (temp
register). We implement flowing matrices A and B through
the array using a sliding window that moves along with the
iterations of the outermost loop (line 1 Figure 5b).

Similar to NSA, the TSSA (Figure 5c) is made of MACs.
However, its interconnection among the MACs differs. In this
case, we implement the MAC array by connecting MacCols
(defined in bottom of Figure 5c). A MacCol consists of m
MACs. As line 5 in Figure 5c shows, we generate p MacCol by
using the #unroll pragma. Within a MacCol, the outputs
flow from up to down. Such a flow is implemented out of the
MacCol, in lines 7 to 10 in Figure 5c. The flow of matrix
A, on the other hand, is implemented similarly to that of A
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function Multiply_TSSA (A[n][m], B[p][m], out[n+p-1][p], 
length):

MAC unit registers for passing through data 
temp_in[p][m]
temp_out[p][m]

for i=0 to (n+m-1)+(p-1):   #pragma HLS pipeline
if i<length:

for j=0 to p:           #pragma HLS unroll
if i-j>0:

MACcol(A[i-j], B[j], temp_in[j], temp_out[j])
out[i][j] = temp_out[j][m-1]
for k=1 to m:

temp_in[j][k] = temp_out[j][k-1]

(a) Generic Top Function

function top (A[n][m], B[p][m], out[n][p], length):

#pragma HLS INTERFACE axis port=A
#pragma HLS INTERFACE axis port=B
#pragma HLS INTERFACE axis port=out
buff_A[n][m]
#pragma HLS ARRAY_PARTITION 

variable=buff_A complete dim=2
buff_B[p][m]
#pragma HLS ARRAY_PARTITION 

variable=buff_B complete dim=2
#pragma HLS dataflow
...
Populate buffers
Multiply_XXX(buff_A, buff_B, out, length)

1
2
3
4
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7

8

9

function Multiply_NSA (A[n][m], B[p][m], out[n][p], length):

for i=0 to (n+m-1)+(p-1): #pragma HLS pipeline
for j=0 to p:           #pragma HLS unroll

for k=0 to n:         #pragma HLS unroll
if i-j>0:

temp[i][j] = MAC(A[k][i], B [j][i], temp[i][j])
out=temp

1
2
3
4
5
6

(b) NSA
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function MACcol (A[m], B[m], C[m], out[m]):

for i=0 to m:  #pragma HLS unroll
out[i] = MAC(A[i], B[i], C[i])      

1
2

(c) TSSA
function Multiply_Meissa(A[n][m], B[p][m], out[n][p], length):

temp[p][m]
#pragma HLS ARRAY_PARTITION variable=temp complete 
for i=0 to (n+p-1):   #pragma HLS pipeline

if i<length:
for j=0 to p:     #pragma HLS unroll

if i-j>0
HadamardProduct(A[i-j], B[j], temp[j])
out[i-j][j] = AdderTree(temp[j])             

10

1
2
3
4
5
6
7
8

function HadamardProduct (A[m], B[m], out[m]):

for i=0 to m:  #pragma HLS unroll
out[i] = A[i] * B[i]

1
2

function AdderTree (in[m]):

out = 0
for i=0 to m:  #pragma HLS unroll

out = out + in[i]
return out

1
2
3
4

(d) Meissa
Figure 5. HLS Pseudo Codes: An overview of the main functions and the
pragmas to generate the systolic arrays: (a) top function, and the multiply
function for (b) NSA, (c) TSSA, and (d) Meissa.

and B in the NSA, in the outermost loop (line 3 Figure 5c).
More specifically, at each time step, which corresponds to an
iteration of the outer loop, a window of size m×p slides over
matrix A. Note that here, only A is a parallelogram.

Meissa (Figure 5d) uses the same #unroll pragma as
the peer architectures to generate the systolic arrays, whereas
the main nested loop of Meissa (lines 3 to 8 of Figure 5d)
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Figure 6. Performance of DNNs: (a) inference time and (b) speedup of
Meissa and the TSSA over the NSA.

generates HadamardProducts, each of which consists of
m multipliers. The instances of multipliers are also generated
by #unroll pragma. The output of a HadamardProduct
is then added by an AdderTree (line 8 Figure 5d). The
integer expressions are balanced by default Viviado HLS [32].
To evaluate this, for generating our desired parallel and
balanced adder trees, we use #expression_balance
pragma to evaluate the difference in the iteration latency by
enabling/disabling this feature. Similar to the TSSA, flowing A
through the multipliers is implemented in the outermost loop,
whereas here, neither A nor B is a parallelogram.

VII. EXPERIMENT SETUP

We target the SoC system of a PYNQ-z1 board and hence
synthesize and implement Meissa and the baselines on its
FPGA, a ZYNQ XC7Z020. We verify the functionality of
our HLS implementations using regression tests. We choose
the largest possible array (i.e., 32 × 32, which implies n =
m = p = 32) that fits in our target FPGA – this is defined
by NSA and TSSA. We review the post-implementation la-
tency, resource utilization, and power consumption reported
by Vivado. All implemented architectures use similar memory
stream interfaces to communicate with an external DDR3
memory. The inputs and outputs of the systolic architectures
are transferred through the AXI stream interface. The clock
frequency is set to 100 MHz. Since unlike throughput, the
minimum steps (maxixmum performance) do not depend on
clock frequency, we chose a moderate clock frequency. In-
creasing the clock frequency equally impacts NSA, TSSA,
and Meissa by either removing positive slacks or increases
the number of cycles. All computations are 32-bit integers.
We execute the single-batch inference of five DNNs, including
VGGS, AlexNet, CifarNet, VGG16, and ResNet50, consisting
of various-size matrix multiplications (dimensions between 16
to 50176). Since we aim to improve and evaluate the latency of
single-batch inference, which is the case in the edge, we do not
overlap different runs although multiplications of a single run
overlap (for TSSA and Meissa). A CPU host (e.g., the ARM
A9 of PYNQ-z1 board) coordinates the relation between the
layers of DNNs and applies the activation functions.

VIII. EVALUATION RESULTS

Our success metric to achieve a faster systolic array is
latency (i.e., single-batch inference time for DNNs). Besides,
to show that Meissa achieves higher performance more effi-
ciently, we evaluate recourse utilization as well as power and
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Figure 7. Layer-by-Layer Analysis: comparing multiplication time steps using NSA for the layers of ResNet50.

energy consumption. As throughput is defined by FLOP/Byte
ratio (defined by the shape of systolic array) and memory
bandwidth (i.e., FLOPS=FLOP/Byte×Bytes/Sec), our imple-
mented NSA, TSSA, and Meissa with the same shapes have
the same throughput.

A. Neural Network Performance

Since the 32 × 32 systolic arrays are smaller than many
matrices in the target DNNs, we need to split the original
matrix multiplications into sub-multiplications and call the
systolic array, implemented on FPGA, several times to perform
the matrix multiplications of a single layer. For TSSA and
Meissa, the sub-multiplications can be arranged such that
consecutive ones reuse a common stationary operand to save
energy and the time of loading the operand (i.e., m time steps
as listed in Table I). For the NSA, however, as the partial
outputs are stored in the PEs, for every sub-multiplication,
both operands must be restreamed into the array. This is one
of the reasons that the NSA has been less frequently used.

Figure 6a compares the inference time (excluding CPU
time) of three systolic arrays. For the NSA, choosing the
direction of offloading the output impacts the total latency.
In our analysis, while m is always FFC, the direction of
offloading is defined by how we assign K and WH to n and
p (i.e., the non-common dimension of two operands of matrix
multiplication). To clarify this matter, Figure 6a shows the
latency for both cases. As the inference times of the five DNNs
suggest, the latency of the NSA in which p = WH and n = K
is similar to the TSSA. The reason, as mentioned earlier, is that
the stationary nature of TSSA helps eliminate the unnecessary
time steps for reloading. However, if we had not split the
original matrix, the TSSA would have performed slightly faster
but not necessarily with fewer PEs (see Figure 4). Figure 6b
illustrates the speedup of Meissa and the TSSA against the
NSA. As the figure suggests, on average, Meissa works 1.99×
and 1.83× faster than NSA and TSSA, respectively.

To investigate the performance of NSA, Figure 7 shows the
time steps required to perform the matrix multiplication of
each layer of ResNet50 along with the matrix dimensions. As
the figure suggests, when WH > K, assigning p = WH is
better, which indicates offloading the output through its shorter

Table II
RESOURCE UTILIZATION AND POWER CONSUMPTION.

NSA TSSA Meissa Available
BRAM(18Kb) 70 51 32 140

LUT 3427 3970 2093 53200
FF 5423 5152 4365 106400

DSP 96 96 96 220

Dynamic Power(W) 0.067 0.073 0.037 N/A
Static Power(W) 0.118 0.131 0.123 N/A

dimension. When K > WH , the opposite assignment works
better. While for ResNet50 and the other evaluated DNNs in
this paper, choosing p = WH and n = K results in better
overall performance, this might not be a general rule for all
DNNs and should be carefully chosen for an NSA. Such a
dependency of performance on a design choice is another
downside of NSA and a reason for its lower popularity.

B. Resource Utilization & Power Consumption

The resource utilization and the average power consumption
of 32× 32 NSA, TSSA, and Meissa, as well as the available
resources of the target FPGA, are listed in Table II. Regardless
of their interconnections, all implemented systolic architec-
tures are similar in the total number of multipliers, adders,
and registers (as they all store a value in their PEs, either an
operand or a partial output). As a result, even though Meissa
uses slightly fewer FFs and LUTs because of its multiplier-
plus-adder-tree architecture, we do not see significant differ-
ences in resource utilization. Note that the smaller BRAM for
Meissa stems from the non-parallelogram inputs streamed and
buffered from external memory. Alternatively, for the other
two systolic arrays, BRAM can be traded for logic if we
choose to reshape the operands in the FPGA.

As listed in Table II, while the static power consumption
of three designs is similar, their dynamic power consumption
(including clock activity) differs. The main reason for this is
the difference in the interconnections among the PEs and the
amount of transferred data. To better explore the rationale be-
hind the different power consumption, we compare the break-
down power consumption in Figure 8. As the figure suggests,
the lower power consumption of Meissa stems from less signal
transmission for two reasons: (i) during the multiplication
steps, the multipliers transfer data only in one direction (the
other connections are used only for loading the stationary
operand), and (ii) the topology of the adder tree reduces the
transmission of data across the PEs.

C. Energy Consumption

As a metric to evaluate efficiency, we compare energy per
inference in Figure 9. Delivering higher performance at lower
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Figure 8. Dynamic Power Consumption: the break-down of power con-
sumed by signal transmissions, logic, BRAM, and DSP for three systolic
architectures. This diagram does not include the power consumed by clock.
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Figure 9. Energy Consumption: comparing the energy consumed by three
systolic architectures to perform an inference.

energy is particularly important in applications with limited
power resources, such as in embedded systems. As reported in
Figure 9, on average, Meissa consumes 2.12× and 2.27× less
energy compared to TSSA and NSA, respectively. Regardless
of the implementations, the absolute number of multiplication
and addition operations is similar. Thus, the key parameter,
which leads to the lower energy of Meissa, is the way we
perform a given number of operations (i.e., the PEs and their
interconnections) that together build the systolic array.

IX. CONCLUSIONS

Efficiently utilizing the limited resources of small FPGAs to
execute matrix multiplication quickly is important in real-time
applications (e.g., using DNNs to detect objects in self-driving
cars). To do so, we proposed Meissa, a fast and scalable
systolic architecture for matrix multiplication, in which, unlike
prior work, the latency grows sub-linearly with the input size.
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