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Abstract—A key real-time task in autonomous systems is
simultaneous localization and mapping (SLAM). Although prior
work has proposed hardware accelerators to process SLAM in
real time, they paid less attention to power consumption. To
be more power-efficient, we propose Pisces, which co-optimizes
power consumption and latency by exploiting sparsity, a key char-
acteristic of SLAM missed in prior work. By orchestrating sparse
data, Pisces aligns correlated data and enables deterministic, one-
time, and parallel accesses to the on-chip memory. Therefore,
Pisces (i) eliminates unnecessary memory accesses and (ii) enables
pipelined and parallel processing. Our FPGA implementation
shows that Pisces consumes 2.5× less power and executes SLAM
7.4× faster than the state of the art.

Index Terms—SLAM, Robotics, Autonomous Systems, Re-
source Constraint, Sparse Algebra, Power Consumption, FPGA.

I. INTRODUCTION

The mobility and navigation of autonomous systems such as
self-driving vehicles, robots, and drones rely on simultaneous
localization and mapping (SLAM). Similarly, SLAM is crucial
in the odometry of virtual and augmented reality (VR/AR).
To track the location of the agent1 within a map, SLAM con-
stantly processes the inputs from sensors that periodically scan
the environment. To accurately run SLAM, researchers have
proposed several algorithms [1]–[5], the key building blocks of
which are compute-intensive matrix algebra such as multipli-
cation, transpose, and inversion. Additionally, with continued
advancement in sensor technologies with high scanning fre-
quency, SLAM performance is becoming a bottleneck for a
faster and more accurate navigation/odometry in autonomous
systems. With a limited power budget in autonomous systems,
performing the compute-intensive SLAM in real time is a key
challenge. This is why several recent studies have accelerated
SLAM on hardware [6]–[12].

Although the prior hardware implementations of SLAM
have gained performance improvements, they did not particu-
larly aim to consume power most efficiently. The first reason
is that none of them consider the sparse structure of the matrix
operation in SLAM, which results in inefficient accesses to on-
chip memory and high power consumption. Moreover, they
often paid less attention to the high ratio of data exchange
between a sequence of functions, which potentially consumes
high power if not implemented appropriately. For instance,
accelerating only the bottleneck-prune functions has been
proposed in prior work [6], [7], [9], which is necessary to
reduce latency but does not consume power efficiently. The
reason is that frequently transferring intermediate data between

1Agent refers to a vehicle, robot, drone, or a smart system running AR/VR.

the functions accelerated in the hardware and those executed in
a host incur extra accesses to on-chip memory and cause high
power consumption and outweigh the performance benefits.
In other studies, accelerating the prepossessing (i.e., feature
extraction) has been proposed [10], [11], which might not be
sufficient in achieving energy efficiency and low latency.

We accelerate the entire SLAM algorithm while considering
power consumption together with real timeliness. Our main
observation is that the computations of SLAM are sparse
and capture a deterministic structure of fixed-sized, small, and
dense matrix algebra. We exploit such sparsity, a fundamental
attribute of SLAM missed by prior work, to accelerate SLAM.
To realize our idea, we propose a power-aware implementation
of SLAM by customizing efficient sparse algebra, Pisces2,
which makes the following contributions:

• Pisces aligns the correlated dense blocks of data and maps
them to adjacent addresses of on-chip memory to enable
direct, deterministic, and parallel accesses.

• Pisces transforms the sparse matrix algebra to a sequence
of fixed-size dense matrix algebra and implements them
in a pipelined computation engine, which reads the
operands from on-chip memory only once and performs
all required operations on intermediate data before writ-
ing them back to the memory.

By making the preceding contributions, Pisces not only re-
duces power consumption by eliminating unnecessary accesses
to on-chip memory but also improves performance and guar-
antees real timeliness by enabling pipelined and concurrent
processing. For evaluation, we implement Pisces and the
state-of-the-art peers using Xilinx Vivado high-level synthesis
(HLS) tool. We implement them on a ZYNQ XC7Z020 FPGA.
Our results show that Pisces consumes 2.5× less power and
executes SLAM 7.4× faster than the state of the art.

II. SLAM OVERVIEW & RELATED WORK

Since the ’90s, several SLAM algorithms have been pro-
posed that are categorized as follows: (i) The direct methods,
which use the sensor inputs (e.g., RGB-D camera) to create
and process dense maps (e.g., dense visual SLAM [1]); (ii)
The indirect feature-based methods, which use a set of features
extracted from the sensor inputs rather than the images them-
selves (e.g., extended Kalman filter (EKF) [2] and oriented-fast
and rotated-brief (ORB) [3], [13] SLAMs). The main differ-
ence between the EKF and ORB methods is their accuracy. To

2Pisces is a constellation including eighteen main stars.



more accurately update a map, the ORB-SLAM uses bundle
adjustment (BA) and loop closure optimizations [13], [14],
at the expanse of performance degradation. As a result, the
lightweight EKF could be a more suitable option as long as
simplicity outweighs accuracy; (iii) The semi-direct and semi-
dense methods that borrow benefits from both of the other
categories (e.g., semi direct [4] and LSD [5] SLAM).

To meet real-time constraints, the traditional software im-
plementations of the aforementioned methods on a general-
purpose microprocessor (e.g., those used in robots and drones)
had not been effective. As a result, hardware implementations
such as π-SoC [15] and HERO [16] have focused on opti-
mizing the system performance by offloading the bottleneck-
prune parts from CPU to FPGA. To be more impactful, some
studies more specifically focused on tailoring the architecture
or microarchitecture. The architecture-focused studies have
explored (i) FPGA implementations for feature-based SLAM
including EKF [6]–[9], ORB [10], [11], LSD [17]–[19], and
dense-direct SLAMs [20]; and (ii) ASIC implementations for
LSD, ORB [12], and visual internal odometry (VIO) [21].

Microarchitecture-focused studies that are most relevant to
our work have mainly focused on feature-based EKF and
ORB SLAMs [6]–[12] because of their simplicity. For in-
stance, accelerating the matrix algebra used in EKF algorithm
by using one dimensional [6], [7] or Faddeev [9] systolic
arrays have been proposed. For ORB, accelerating feature
extraction/matching by orchestrating the accesses to features
by either using hardware techniques such as synchronized
two-stages shifting line buffers [10] or generating rotationally
symmetric patterns [11] have been proposed. In this paper,
we focus on accelerating EKF and ORB SLAM. Unlike prior
work, we target co-optimizing power consumption and latency.
To do so, we study and deploy the sparsity feature of SLAM
computations that have often been missed in prior work.

III. CHALLENGES & MOTIVATION

Compared to software implementations, the recently pro-
posed hardware accelerators have been able to improve the
performance and power consumption of SLAM. However, the
key challenge is that the two following aspects of SLAM
that create a performance bottleneck and increase power con-
sumption have remained unstudied: (i) The random accesses
to on-chip memory for retrieving correlated data and (ii) The
high data-reuse rate of compute-intensive matrix operations of
SLAM that results in accesses to on-chip memory. Our key
observation to solve this challenge is that since the building
blocks of SLAM consist of sparse computations, they cause
the first aspect and worsen the second one. As a result, we
take advantage of sparsity to improve the power consumption
and performance of SLAM in concert. Before explaining our
proposed solution in Section IV, we discuss why sparsity exists
in commonly used feature-based SLAM methods.
The Sparse Algebra in SLAM:
The sparse matrix operations of SLAM are structured and
hence create opportunities for optimization. To clarify, we
briefly review their main sparse computations in the following.

EKF is a feature-based SLAM that has a map consisting of
the state of the agent (x, y, θ) and the surrounding landmarks
(x, y), stacked together in a vector x1×N (N = 2×L+3, L: #
landmarks). Since the map is modeled by Gaussian variables,
it is denoted by a mean vector x̄ and a covariance matrix
P (Figure 1a) that have to be kept updated constantly while
the agent moves during predict and update phases, which take
16.56% and 83.4% of the total execution time, respectively:

(1) Predict: Based on the prior state x̄(t−1) and the move-
ment of the agent, the current state x̄(t) of the agent and the
related elements of the covariances matrix P (t) are predicted:

x̄(t) = f(x̄(t−1), u) (1)

P (t) = FxP
(t−1)FTx + FqQF

T
q (2)

in which f is the prediction function, u is the control vector,
q is the motion noise, Q is the covariance matrix of q, and
Fx and Fq are Jacobian matrices of the motion model with
respect to their parameters. Since during this phase, only the
agent moves, the largest part of the map remains invariant.
Therefore, the Jacobian matrices are sparse and result in
modifying only the following parts of the x̄(t) and P (t): the
state mean of the agent, the covariance of the agent (Pa,a), and
the cross-variances between the agent and the other landmarks
(Pa,l and Pl,a), as shown in Figure 1b.

(2) Update: The surrounding landmarks are observed and
upon each of the observed landmarks, the covarience matrix of
innovation Z2×2 and the Kalman gain KN×2 are calculated.
Then, the x̄(t) and P (t)

N×N are updated:

Z = HP (t)HT + V (3)

K = P (t)HTZ−1 (4)

x̄(t) = x̄(t) +K(r − h(x̄(t−1))) (5)

P (t) = P (t) −KZKT (6)

in which H2×N is the Jacobian matrix of the observation
model, V2×2 is the covariance matrix of observation noise,
r2×1 is the observation vector, and h is the observation func-
tion. At each iteration of this phase, Equations 3 to 6 process
only one landmark, the observation of which is independent of
the other landmarks. As a result, the Jacobian matrix H is also
sparse and updates those elements of x̄(t) and P (t) that involve
the state of the agent, the state of the concerned landmark, their
covariances, and their cross-variances (Figure 1c).

ORB is the other feature-based SLAM algorithm, the com-
putations of which engage structured sparse matrices. Here,
we focus on BA [13], [14], an optimization in ORB that

agent state

landmarks
state Pl,lPl,a

Pa,a Pa,l

x̄ x̄ x̄P P P

(a) (b) (c)
Fig. 1. Sparsity in EKF algorithm: (a) The state mean of the agent and
landmarks (x̄) and covarience matrix (P ) including the co-variences (Pa,a
for agent and Pl,l for landmarks) and cross-variences of agent and landmark
with respect to each other (Pa,l and Pl,a); and the updated parts of the map
during the (b) predict phase and (c) update phase of EKF algorithm.



potentially causes a performance bottleneck. For instance,
based on our experiments on a Quad-core Cortex-A72 (setup
in Section V), the local and global BAs consume 9.7%
and 89.23% of total time of ORB SLAM. BA is typically
formulated as a non-linear least squares problem that is usually
solved by using the Levenberg-Marquardt (LM) algorithm. In
general, if x is a vector of variables, and f(x) a function of
x, LM formulates the optimization problem as:

min
x

1

2
||f(x)||2 (7)

A general strategy for solving non-linear optimizations is to
solve a sequence of approximations to determine a correction
∆x to the vector x, the computational complexity of which can
be reduced by using Schur’s complement trick, which trans-
forms solving Equation 7 to solving the following equation:

Hµ(x)∆x = −g(x) (8)

in which g is the gradient vector, and Hµ is the regularized
Hessian matrix comprised of two block diagonal sparse matri-
ces X and Y , and a general block sparse matrix Z the block
of which is fixed-size and small:

Hµ =

[
X Z
ZT Y

]
(9)

As Figure 1 and Equation 9 show, EKF and ORB cap-
ture common features of sparsity: (i) their sparse matrix
computations comprise a sequence of matrix operations on
sparse matrix operands that capture fixed-size, small, and
dense blocks of data; and (ii) the correlated dense blocks
corresponding to a single sparse matrix operation are scattered
over deterministic related locations of the original matrix.

IV. PISCES

This section explains the key insights of Pisces and intro-
duces its microarchitecture and system overview.

A. Key Insights

To efficiently improve SLAM performance, Pisces leverages
the structure of sparse computations to improve the locality
of accesses to the on-chip memory, optimize the matrix
operations (i.e., the small fixed-size matrix operations on dense
operands), and reduce accesses to the on-chip memory. Before
focusing on details, we explain the fundamental insights on
which we build our system. Our first insight is to align the
correlated data (i.e., the dense blocks of data that are processed
together) and map them to adjacent locations of the on-chip
memory.1 Such a data ordering/mapping is clarified by the
following example in the update phase of the EKF SLAM. As
Equations 3 and 5 show, matrices P and H and vector x(t)

(together called the map) are the inputs to the update phase
and have the structures shown in Figure 2a. The size of each
block is 2× 2, which depends only on the coordinate system
(e.g., 2 represents x and y in a Cartesian coordinate system).
The colored blocks correspond only to one specific iteration of
processing landmarks, and the gray blocks (i.e., the covariance

1For the rest of the paper, the on-chip memory and BRAM are inter-
changeable. This is because although, in this paper, we target an FPGA
implementation, the insights are also applicable to an ASIC design.

P

⇥ =

BRAM blocks: Original sparse matrices:

0 1 i... ...

The dense form of HPHTHPHT : 

H ⇥ =
x̄

H2⇥4 ⇥ A4⇥2 = B2⇥2 :

P4⇥4 ⇥ HT
4⇥2 = A4⇥2 :

(a) (b) (c)
Fig. 2. The key insight to accelerate the update phase of EKF: (a)
An example of the parts of the maps and the Jacobian matrix required for
executing the update phase of EKF for updating the map upon observing
one landmark. (b) Mapping the data corresponding to the observed landmark
to a single block of BRAM. (c) Performing an example of sparse matrix
multiplication as two small dense matrix multiplications.

of the agent, Pa,a) are common to all of them. To access
only the colored block and to access them together directly,
Pisces maps them to a single block of BRAM (Figure 2b).
Our second insight is to implement the entire chain of sparse
computations (e.g., Equations 3 to 6) as a sequence of dense
matrix operations that read a block of BRAM only once and
apply all required processes before writing it back.

Based on the insights, we implement data reuse by flowing
data between the compute units through registers rather than
through BRAM blocks. Such an implementation is more
effective in achieving high power efficiency but is not always
feasible because of the non-deterministic nature of accesses.
However, the following crucial characteristic of matrix algebra
in SLAM makes it possible. First, we put the 2× 2 blocks of
data together, regardless of their original location in matrix P ,
and preform a matrix operation on the new fixed dense matrix
operands without preserving the locations of the blocks. For
instance, the HPHT of Equation 3 is transformed to two fixed
matrix multiplications shown in Figure 2c.

The second and more important characteristic of sparse
SLAM is that the sparsity and the location of dense blocks
propagates through the equations. Thus, without needing
to preserve the location of the dense blocks, we continue
performing the required dense matrix operations in a sequence
by passing the intermediate results through operations and still
maintain the functionality. The third characteristic is that the
intermediate data flowing through the dense matrix operations
are small and do not need addressable accesses to memory.
Therefore, they can be implemented either by using registers
or by just being passed in a combinational logic, whichever
better suits the design choices such as clock frequency.
B. Microarchitecture

The microarchitecture of Pisces consists of modules of
dense fixed-size matrix operations that are placed together in
two levels of pipeline in a specific configuration to accelerate
a particular SLAM algorithm.

Building Blocks: The matrix algebra required by EKF and
ORB SLAM include multiplications, transpose, inverse, sum,
and subtraction. Because of the 2 × 2 size of the blocks
captured in the original sparse matrices and the deterministic
distribution patterns of such blocks (discussed in Section III),
the dimensions of the operands are always either 2 or 4,
which depends only on the coordinate system. Therefore, we
categorize the operands based on their sizes into (i) small,



TABLE I
THE LATENCY OF THE MODULES OF DENSE MATRIX OPERATIONS.

Matrix Op. Transpose Mult. LM∗ Mult. MM∗ Mult SM/MS∗ Sub/Sum

Latency(µs) 0.06 0.66 0.33 0.58 0.09
∗LM: Large-Medium, MM: Medium-Medium, SM: Small-Medium, MS: Medium-Small.

2× 2, (ii) medium, 2× 4 or 4× 2, and (iii) large, 4× 4. The
implementation and optimization of matrix operations on such
operations are straightforward. For instance, regardless of the
complexity of matrix inversion, it can be implemented by a
small full combinational logic. For Pisces, we implement the
matrix operation on FPGA (see Section V for details) and list
their latencies in Table I. Note that in the specific case of EKF
and the BA of ORB, we only need transpose on medium-size
matrices and inverse on small-size matrices. Besides, for all
the multiplications, only the most inner loop is parallelized.

Pipeline Overview & Configurations: Pisces implements
two levels of pipelines in its main microarchitecture, as shown
in Figure 3. The first level is the outer pipeline that enables
streaming the map from a source (whether from host CPU, or
another module in FPGA). The three stages of this pipeline are
(i) input stage, streaming in the input map to the input buffers,
(ii) process stage, processing the map and writing the updated
map to the output buffer, and (iii) output stage, streaming out
the content of the output buffer. The buffers of this pipeline are
implemented in BRAM. For EKF, the BRAM blocks contain
the colored blocks shown in Figure 2b. The gray blocks are
sent separately to the hardware accelerator (through registers)
and are not shown in Figure 3.

The second level, inner pipeline, breaks down the process
stage into smaller stages, each implemented by one (or a
combination of more) dense matrix operation listed in Table I.
In this level of pipeline, the number of stages and the operation
of each stage are defined by the algorithm. For instance, as
the table in Figure 3 illustrates, the update function of EKF
and the BA of ORB require six and four stages, respectively.
As shown, for balancing the stages, transpose, inverse, and
sum/sub, which are faster (see Table I), are combined with
the multiplications. For EKF, the sequence of operations are
derived from Equations 3 to 6. For BA of ORB, the details
of all equations are not explained for the sake of brevity, but
readers are encouraged to read the references [3], [13].
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Fig. 3. The microarchitecture of Pisces: Streaming the map chunks, pro-
cessing them concurrently through independent pipelined matrix operations,
and streaming out the updated chunks of map (L: # of landmarks).

Default mapping: 

... L2 3 4 510

Compressed mapping: 

3 40 �landmarks:

(a) (b)
Fig. 4. The compression scheme: (a) The one-on-one mapping of observed
landmarks to BRAM blocks. (b) Mapping the observed landmarks to adjacent
BRAM blocks and saving their indices separately.

C. Design Optimization

Dedicating BRAM blocks to buffer the entire map in the
FPGA, and one-on-one mapping of blocks to landmarks (as
shown in Figure 4a) is not the most efficient way of utilizing
the on-chip memory. More specifically, because, over time, the
agent observes new landmarks and stops observing some of
the old ones. Therefore, we need to dynamically replace old
landmarks with new ones. As a result, we exploit a simple
compression scheme shown in Figure 4b. Since the operations
can be performed regardless of the absolute location of a map
chunk in the original matrix, we simply compress them and
perform the operations on a given number of chunks. For
instance, as shown in Figure 4b, we choose to stream groups
of four landmarks and process four of them in parallel to
sustain a moderate resource utilization (Table II). However,
since the design is modular, larger group sizes and more levels
of parallelism can be easily configured (Section VI).
D. System Architecture

The explained microarchitecture of Pisces (Figure 3) is
designed to accelerate the entire time-consuming iterative
processes of SLAM (e.g., processing the landmarks in the
update phase of EKF or the BA of ORB). When we implement
Pisces on an SoC system, if the real-time constraint is not hard,
the non-iterative processes (e.g., the predict phase of EKF)
can be executed in the CPU. In such a system, as shown in
Figure 5, the CPU generates the list of landmarks and streams
them in groups (e.g., groups of four chunks of the map) to
the FPGA. Otherwise, in a hard real-time system, as a design
choice, all the tasks should be pushed to the FPGA. Such tasks
include handling the sensor inputs and generating the list of
observed landmarks, which consists of a combination of the
same matrix operations listed in Table I.

V. EVALUATION METHODOLOGY

We implement Pisces and the baselines using Xilinx Vivado
HLS. We use relevant #pragrma as hints to describe our
desired microarchitectures in C++. For instance, the two
levels of pipelines (Figure 3) are implemented using dataflow
pragma. To create four instances of the inner pipeline, we use
unroll pragma and enable parallel accesses to BRAM buffer

CPU
(generates the list of 
observed landmarks)

FPGA
(processes the flow of 

compressed chunks of map

Sensors

Memory
(includes the 
entire map) landmarks &

updated map

landmarks &
init. map

Fig. 5. The system overview of Pisces.



TABLE II
RESOURCE UTILIZATION AND THE TOTAL POWER CONSUMPTION.

EKF ORB
1DSA [7] FSA [9] Pisces EKF eSLAM [11] Pisces ORB Available

BRAM(Kb) 756 297 252 78 180 2520
LUT 7824 3073 14472 56954 11898 53200
FF 4223 5176 16686 67809 12178 106400

DSP 32 2 75 111 114 220

Power(W) 1.302 0.986 0.384 1.936 0.292 N/A

using array partition pragma. We target the SoC system of
the PYNQ-z1 board. Therefore, we synthesize and implement
Pisces and the baselines on its FPGA, a ZYNQ XC7Z020. We
present the post-implementation resource utilization, power
consumption, and latency, reported by Vivado. Inputs and out-
puts of the accelerators are transferred through the AXI stream
interface. The clock frequency is set to 100 MHz. To study the
performance of EKF, we emulate various environments with
a various number of landmarks. Such a methodology helps us
to explore the scalability feature of EKF, which is known to
be the drawback of EKF. For ORB, we evaluated Pisces and
the baseline using the EuRoC dataset.

We compare Pisces against two state-of-the-art hardware
accelerators for SLAM, including a one-dimensional systolic
array (1DSA) [7] and the Faddeev systolic array (FSA) [9]
for EKF. For ORB SLAM, we implement eSLAM [11] as
a complimentary accelerator to explore the benefits of using
Pisces and eSLAM together for further improvement. We also
implement the EKF and ORB SLAMs on a Raspberry Pi 4
board not only to study the performance of executing SLAM
on Broadcom BCM2711, Quad-core Cortex-A72 (ARM v8)
SoC @1.5GHz with 4GB SDRAM, but also to validate the
functionality and accuracy of FPGA implementation.

VI. RESULTS

This section evaluates the resource utilization, power con-
sumption, and latency of Pisces compared with the baselines.

A. Resource Utilization & Power Consumption

The resource utilization of Pisces (for both EKF and ORB
configurations) and the baseline hardware accelerators, as well
as the available resources of the target FPGA, are listed
in Table II. As the numbers show, for EKF SLAM, Pisces
employs fewer or an equal number of BRAM blocks while
using up to 4× more LUT and FF as those utilized by 1DSA
and FSA. As this comparison suggests, Pisces trades BRAM
for FF and LUT to more efficiently consume the power budget.
The impact of such a trade-off is 3.3× and 2.5× less power
consumption compared to 1DSA and FSA, respectively, as is
listed in Table II (the total power also includes the activity
of clock). The table also lists the resource utilization and
power consumption of eSLAM and the ORB configuration of
Pisces that accelerate two different parts of ORB. However,
in an FPGA with limited available resources, such as our
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the prior hardware accelerators and the software implementation on ARM
processor when the number of landmarks varies.

target FPGA, implementing both eSLAM and Pisces together
exceeds the available LUTs and DSPs. In such a case, we
suggest accelerating only the local and global BA, as they are
the time-consuming parts. As a point of comparison, running
SLAM on the ARM processor of Raspberry Pi 4 consumes
approximately 5W .

The breakdown of the power consumption, shown in Fig-
ure 6, illustrates the impact of BRAM accesses on the total
power consumption. For instance, although FSA and the EKF
configuration of Pisces use a similar amount of BRAM, the
power consumed by the BRAM in Pisces (i.e., 0.009W ) is
only a tiny fraction of the total power. More specifically, 1DSA
mainly targets accelerating Equation 6. Besides the accesses
to BRAM risen by each call to Equation 6, to accelerate this
equation, 1DSA uses a one-dimensional array of multiply and
accumulate (MAC) units and hence frequently writes back
the intermediate data to the BRAM. On the other hand, FSA
implements the Schur’s complements to accelerate the linear
equations and matrix inversions of the EKF algorithm. FSA
uses connected arrays of processing elements (PEs), in which
each PE is responsible for the computation of one row of
FSA. Since the sizes of the PEs are fixed, and as they did not
leverage sparsity, the FSA operations are performed in tiles.
As a result, handling the boundary condition of tiles generates
extra access to BRAM.
B. Latency

EKF: First, we compare the latency of the update phase of
EKF with the software implementation (on the ARM proces-
sor), 1DSA, and FSA. As Figure 7 shows, only when a few
(i.e., less than 15) landmarks exist in the environment, is the
latency of ARM smaller than 0.03s, which indicates processing
the sensor inputs generated by 30 frames per second (fps)
rate. Note that a typical urban environment easily has more
than 100 trackable landmarks, if not more. For a higher
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implementations of EKF SLAM. (a) 50 landmarks scattered over various map
sizes. (b) 20 to 350 landmarks scattered over a map of size 100.
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Fig. 9. Latency breakdown of ORB: Comparing ARM, eSLAM, Pisces, and a combination of Pisces and eSLAM (i.e., Pis.+ eS.).

number of landmarks, the latency of ARM implementation
grows exponentially. The same story occurs for the prior
hardware implementations with a high number of landmarks,
even though their latencies are an order of magnitude smaller
than the software implementation. In fact, we see that the
power consumption is not the only concern about the prior
hardware accelerators, as we clarify in the following.

Seeking a fair comparison for total EKF latency, similar to
Pisces configuration (details in Section IV-C), we apply a four-
level parallelism to the prior hardware accelerators. Besides,
we assume that all the accelerators execute the first phase (i.e.,
predict) in FPGA and spend 2.85µs on Equations 1 and 2.
Moreover, we assume that, similar to the baselines, Pisces
does not benefit from pipelining for processing each chunk of
the map. The results of this experiment, Figure 8, show that
on average Pisces executes EKF approximately 11× and 7.4×
faster than 1DSA and FSA, respectively. The speedup of Pisces
stems from implementing the sparse operations as a chain
of fixed-size dense matrix operations. In particular, executing
Equation 6 (i.e., the bottleneck-prune equation) takes 1.18µs,
which is approximately 15× as fast as 1DSA.

As Figure 8a shows, when fewer landmarks (e.g., 50) exist
in an environment, regardless of the map size, 1DSA and FSA
can meet the real-time constraints defined by a 60 or less fps
sensor. However, as Figure 8b shows, as soon as the number of
landmarks increases, none of the prior hardware accelerators
are fast enough, even if the sensor rate is as low as 25 fps.
In a crowded environment (e.g., >350 landmarks), the four-
level concurrent processing of the current Pisces configuration
might not deliver an appropriate latency. In such cases, we
recommend increasing the level of concurrency. The modular
design of Pisces eases such a modification.

ORB: Figure 9 presents the latency breakdown of ORB
SLAM including the time spent on feature extraction and
matching that is accelerated by eSLAM, and the local and
global BAs that are accelerated by our work, Pisces. As the
figure shows, although eSALM extracts/matches the features
8× as fast as the software implementation on ARM, it does not
have a significant impact on total latency. On the other hand,
Pisces significantly reduces the latency of local and global BA.
As a result, to meet real-time constraints, we can combine the
two approaches if the available resources of the target FPGA
allow. Otherwise, we prioritize accelerating BA.

VII. CONCLUSIONS & FUTURE WORK

This paper proposed Pisces, a new approach to accelerate
SLAM. To improve power consumption and latency, Pisces

transformed the sparse matrix operations into a chain of fixed-
size dense matrix operations. Pisces reduces the accesses
to BRAM by implementing the data exchange between the
functions by using registers rather than BRAM accesses.
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