524

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 4, APRIL 2021

Efficiently Solving Partial Differential Equations in
a Partially Reconfigurable Specialized Hardware

Bahar Asgari

, Ramyad Hadidi

, Tushar Krishna",

Hyesoon Kim™, Member, IEEE, and Sudhakar Yalamanchili, Fellow, IEEE

Abstract—Scientific computations with a wide range of applications in domains such as developing vaccines, forecasting the weather,
predicting natural disasters, simulating aerodynamics of spacecraft, and exploring oil resources, create the main workloads of
supercomputers. The key integration of such scientific computations is modeling physical phenomena that are done with the aid of
partial differential equations (PDEs). Solving PDEs on supercomputers, even with those equipped with GPUs, consumes a large
amount of power and yet is not as fast as desired. The main reason behind such slow processing is data dependency. The key
challenge is that software techniques cannot resolve these dependencies, therefore, such applications cannot benefit from the
parallelism provided by processors such as GPUs. Our key insight to address this challenge is that although we cannot resolve the
dependencies, we can reduce their negative impacts by using hardware/software co-optimization. To this end, we propose breaking
down the data-dependent operations into two groups of operations: a majority of parallelizable and the minority of data-dependent
operations. We execute these two groups in the desired order: first, we put together all parallelizable operations and execute them all,
subsequently; then, we switch to execute the small data-dependent part. As long as the data-dependent part is small, we can
accelerate them by using fast hardware mechanisms. Besides, our proposed hardware mechanisms guarantee quickly switching
between the two groups of operations. To follow the same order of execution, dictated by our software mechanism, and implemented in
hardware, we also propose a new low-overhead compression format — sparsity is another attribute of PDEs that require compression.
Furthermore, the core generic architecture of our proposed hardware allows the execution of other applications including sparse
matrix-vector multiplication (SpMV) and graph algorithms. The key feature of the proposed hardware is partial reconfigurability, which
on one hand, facilitates the execution of data-dependent computations, and on the other hand, allows executing broad application
without changing the entire configuration. Our evaluations show that compared to GPUs, we achieve an average speedup of 15.6x for

scientific computations while consuming 14 x less energy.

Index Terms—Scientific computation, partial differential equations, data dependency, sparsity, partial reconfigurability

1 INTRODUCTION

CIENTIFIC computations are the main component in sev-
Seral crucial domains such as exploring biological mole-
cules, forecasting the weather, predicting natural disasters,
and simulating aerodynamics that mainly rely on model-
ing physical phenomena. Such computations remarkably
impact human life. Modeling/simulating a vaccine or pre-
dicting an earthquake are examples of computations that
can save lives if done accurately and in a timely manner.
However, modern high-performance computers equipped
with CPUs and/or GPUs are poorly suited to these prob-
lems, utilizing a tiny fraction of their peak performance
(e.g., 0.5 - 3 percent) [1]. Such low performance stems from
the slow process of solving partial differential equations
(PDEs), a key tool used in mathematical modeling.

o Bahar Asgari, Tushar Krishna, and Sudhakar Yalamanchili are with the
School of Electrical and Computer Engineering, Georgia Institute of Tech-
nology, Atlanta, GA 30332 USA. E-mail: {bahar.asgari, sudha)@gatech.
edu, tushar@ece.gatech.edu.

e Ramyad Hadidi and Hyesoon Kim are with the School of Computer Sci-
ence, Georgia Institute of Technology, Atlanta, GA 30332 USA. E-
mail: rhadidi@gatech.edu, hyesoon@cc.gatech.edu.

Manuscript received 1 Aug. 2020; revised 12 Jan. 2021; accepted 31 Jan. 2021.
Date of publication 19 Feb. 2021; date of current version 11 Mar. 2021.
(Corresponding author: Bahar Asgari.)

Recommended for acceptance by |. Yang and Y. Solihin.

Digital Object Identifier no. 10.1109/TC.2021.3060700

The key challenge of solving PDEs is that the common
methods to solve them capture patterns of data dependen-
cies preventing them from utilizing high-level parallelism
provided by modern processors such as GPUs even by the
aid of software techniques. For instance, our key observation
suggests that the operations in a PDE solver are only par-
tially dependent. Therefore, we can potentially break down
the data-dependent operations into a majority of paralleliz-
able operations and a minority of data-dependent ones.
Although such a technique increases the chance of parallel-
ism, it cannot be effective, as long as the dependencies still
exist. Thus, software optimization, not only cannot improve
the performance but also may cause it to drop by adding
extra overheads.

Our key insight to address the challenge is that, even
though we cannot resolve the data dependencies, we can
minimize their negative impact on overall performance by
co-optimizing software and hardware. More specifically,
we propose (i) extracting the true small data-dependent
operations in the software, and (ii) accelerating the execution
of small data-dependent operations in hardware. Besides
accelerating the data dependent part, our approach helps
improving performance by putting together the none data-
dependent operations and executes them concurrently in a
non-stop streaming manner before switching to the execu-
tion of data-dependant operations. Such a modification in
the execution order does not impact the correctness of the

0018-9340 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2305-9892
https://orcid.org/0000-0003-2305-9892
https://orcid.org/0000-0003-2305-9892
https://orcid.org/0000-0003-2305-9892
https://orcid.org/0000-0003-2305-9892
https://orcid.org/0000-0002-8731-1084
https://orcid.org/0000-0002-8731-1084
https://orcid.org/0000-0002-8731-1084
https://orcid.org/0000-0002-8731-1084
https://orcid.org/0000-0002-8731-1084
https://orcid.org/0000-0001-5738-6942
https://orcid.org/0000-0001-5738-6942
https://orcid.org/0000-0001-5738-6942
https://orcid.org/0000-0001-5738-6942
https://orcid.org/0000-0001-5738-6942
https://orcid.org/0000-0002-6061-7825
https://orcid.org/0000-0002-6061-7825
https://orcid.org/0000-0002-6061-7825
https://orcid.org/0000-0002-6061-7825
https://orcid.org/0000-0002-6061-7825
mailto:bahar.asgari@gatech.edu
mailto:sudha@gatech.edu
mailto:tushar@ece.gatech.edu
mailto:rhadidi@gatech.edu
mailto:hyesoon@cc.gatech.edu
Ramyad
Author’s Copy

ASGARI ETAL.: EFFICIENTLY SOLVING PARTIAL DIFFERENTIAL EQUATIONS IN A PARTIALLY RECONFIGURABLE SPECIALIZED... 525

computations, because of the distributive property of inner
products.

In summary, this paper makes four main contributions:

e Hardware mechanisms: By employing simple hardware
components such as last-in-first-out (LIFO) and/or
first-in-first-out (FIFO) buffers and shift arrays in the
proposed architecture, we guarantee smooth concur-
rent execution of none data-dependent operations,
fast switching between the two groups of distinct
operations, and fast execution of the data-dependent
operations.

o Compression format: PDEs are often sparse and require
a compression mechanism. In our case, an appropri-
ate compression format that follows the execution
order, dictated by the software optimization would
help prevent the extra overhead of decompression
and guarantee smooth streaming of data from mem-
ory into the hardware. To this end, we propose a new
compression format similar to the commonly used
format, blocked compressed sparse row (BCSR). The
difference between BCSR and our proposed format is
that is captures the particular order of blocks and
order of entries in the blocks. As a result, our pro-
posed compression format incurs the same amount of
metadata overhead as BCSR does.

e Broad applications: If we exclude the particular hard-
ware mechanism used for handling the execution of
data-dependent operations, our core hardware
engine is generic enough to be used for accelerating
many other applications including sparse matrix-
vector multiplication (SpMV) and graph algorithms.

e Partial reconfiguration: Not only the distinct opera-
tions in scientific computations but also the kernels
in several various applications, all require the same
core hardware engine. Given this fact our proposed
hardware captures the key feature of partial reconfi-
gurability, the benefits of which is two-fold: first,
subsequential same-type concurrent operations can
be executed without frequent interruptions for
instruction decoding or data-path selection; second,
executing different applications (or one multi-kernel
application including distinct kernels) can be done
without needing to change the entire configuration.

We evaluate our proposed work on a wide range of

workloads from various domains of scientific computations
and graph analytics. Our comparisons with a CPU and a
GPU platform show that we achieve an average speedup of
15.6x for scientific problems and 8x for graph algorithms.
Besides, our proposed system consumes 14x less energy
compared to a GPU. Furthermore, our comparison with the
state-of-the-art hardware accelerators for scientific prob-
lems [2], for SpMV [3], and graph analytics [4] suggest that
we can achieve an average speedup of 1.7x, 2.1x, 1.87x,
respectively. We also recommend implementing our pro-
posed hardware on FPGAs to leverage their partial reconfi-
gurability feature, a key feature that has been around for
over a decade, but fewer applications have been proposed
to use it. For demonstration, we implement our architecture
on XC7A200T Xilinx FPGA. Finally, we discuss the further
applications of our proposed approach to accelerate a
more complex mathematical computation, matrix inversion,
another key component in scientific computation.

3.5 3.5
= 3 e m 3
< 25 25 3
e 2 2 &
o fr=
s 1.5 15 &
"g 1 1
“ 05 0.5
.
B Molecular Bioscience 13% 0 0o X000 - 0
W Chemistry 13% ’g§§§§§g§g§g
B Material Research 13% ER S %‘ g <2332o%
= = N N o -
B Atmospheric Science 26% LggSSe2rweo g u“-"
. Qo +-ZZ2<c €€ HuW
B Physics 10% S >« Za 5 3uc
< 3 g
B Astronomical Sciences 7% ,>° % g § % B é 2
® Earth Sciences 7% S £ ;: a o ; T
] f=
© Chemical and Thermal Systems 3% < O £9 E € =
Advanced Scientific Computing 3% 2 5 = <
= ==
other3% (a) (b) ==

Fig. 1. Attributes of modeling physical scientific computations: (a) Differ-
ent domains of modeling physical create more than 96 percent of work-
loads on Kraken supercomputer, housed in the Oak Ridge National Lab.
(b) The performance of modern computing platforms ranked by the stan-
dard metric of HPCG [1] benchmark on GPUs and CPUs.

2 MOTIVATION

By having reached an advanced stage in computing technol-
ogies, we expect computers to perform complex tasks
quickly and accurately. However, even the performance of
most modern computers is not always as fast and accurate as
desired. Developing vaccines, forecasting the weather, pre-
dicting hurricane path or the exact time of an earthquake,
simulating aerodynamics of spacecraft, exploring oil and gas
resources, and exploring biological molecules as well as
chemical compounds are examples of such time-consuming
tasks that can change our lives and future if done accurately.
The aforementioned scientific computations that rely on
modeling physical phenomena create a significant portion of
supercomputer workloads. For instance, as Fig. 1a illustrates,
more than 96 percent of Kraken is devoted to various
domains of scientific computations from modeling chemical
systems to atmospheric sciences [5]. However, not only is
modeling physical phenomena costly in terms of dollar and
power consumption but also it is slow.

Supercomputers consume large amounts of power,
almost all of which is converted into heat, requiring costly
cooling. For example, Tianhe-1A, a GPU-based supercom-
puter, consumes 4.04 megawatts (MW) of electricity [6].
Although it is 3x more power-efficient than a CPU-based
supercomputer with same peak performance — such differ-
ence in power consumption can provide electricity to over
five thousand homes for a year, it indicates approximately
$3.5 million per year assuming $0.10/kWh is $400 an hour.
Despite all dollar and power-consumption expenses, many
scientific problems are not able to utilize the full computa-
tion power provided by the CPU- or GPU-based supercom-
puters. For instance, as the bar charts in Fig. 1b show, no
more than 3 percent of the peak performance is utilized by
HPCG [1] benchmark, the representative of scientific com-
putations. The secondary axis of Fig. 1b depicts the perfor-
mance achieved by the fastest implementation based on the
HPGC ranking, which implies that executing scientific
problems at these speeds takes weeks or months to achieve
just an approximate answer — not even the exact accurate
solution in many cases. The inefficiently and ineffectiveness

526

Fig. 2. Discertization into a 3D grid: (a) Shallow-water equations (a set of
PDEs) discertized into a 3D grid — obtained from Max-Plank Institute of
Meteorology and (b) The resulting sparse coefficient matrix A.

of general-purpose computing in executing many critical
problems have motivated us to investigate the sources
of issues and explore solutions for them, particularly
specialized-hardware solutions, which have initially been
aimed for more efficiently utilizing hardware budget for
achieving desired performance.

3 SoOLVING PDEs: ATTRIBUTES & CHALLENGES

A PDE is a differential equation that contains unknown
multivariable functions and their partial derivatives. PDEs
are used to formulate problems involving functions of sev-
eral variables, which can be used to create a computer
model. Therefore, PDEs are one of the key tools used in sci-
entific computation and modeling of physical phenomena.
To use digital computers for solving PDEs, they are often
transformed into a system of linear equations, Az = b, in
which vector b and matrix A are the coefficients and vector
x consists of the unknowns. PDEs have two main attributes
that challenge the solving process. First, the methods to
solve PDEs include patterns of data-dependent computa-
tions. We discuss these dependencies and their consequen-
ces in Sections 3.1 and 3.2, respectively.

The second attribute of PDEs is that the coefficient matrix
A is often very large and sparse for two or higher dimen-
sional problems (e.g., elliptic, parabolic, or hyperbolic
PDEs). This is because, to convert PDEs into a linear system,
they must be discretized into a grid. However, since not all
the points in a grid are used in the discretization of a phe-
nomenon, the coefficient matrix A is sparse. Fig. 2 shows an
example of a set of PDEs — that describe the flow below a
pressure surface in a fluid; and the equivalent sparse matrix,
A. While the sparseness of data demands high memory
bandwidth, the dependencies limits utilizing the available
memory bandwidth. Therefore, we cannot simply add more
memory bandwidth to gain performance. After proposing
our solutions for addressing the challenges risen as a result
of dependencies, we show our tailored compression format
for envisioning sparseness and dependencies together (Sec-
tion 4.2.2) and putting together the pieces of our solutions
for the sparse matrices (Section 4.2.4).

3.1 Methods for Solving PDEs

To solve PDEs, two categories of methods exist: direct and
iterative. Direct methods rely on matrix inversion and
attempt to solve the problem by a finite sequence of opera-
tions. In the absence of rounding errors, direct methods
(e.g., Gaussian elimination) can deliver an exact solution.
However, when a linear system involves many variables
(sometimes of the order of millions), direct methods would
be prohibitively expensive (and in some cases impossible)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 4, APRIL 2021

Preconditioned conjugate gradient (PCG): |
/| | for row = 0 to rows

p(0)=x; e y

r(0)=b-Ap(0); <" |if(depth<3) - sum = b [row]

fori=1 tom rad SymGS(); ¢ for j=0 to nnz_in_row [row]
2=MG(r(i-1)); <~ SpMV(); col =A_col[j];
a(i)=dot_prod(r,z); MG(depth++); val =A_val[j];
if i=1 then N SymGS(); ° if (col = row)

p=z; s |else B sum = sum -val * x[col];

else N SymGS(); | x[row] = sum/A_diag[row];

p=a(i)/a(i-1)*p+z;
(i)=a(i)/dot_prod(p,Ap);
(i+1)=x(i)+a(i)p(i);
r(i)=r(i-1)-a(iAp(i);

al
X

Fig. 3. An example of the PCG algorithm [1]: solving a sparse linear sys-
tem of equations (i.e., Az = b), including SpMV and SymGS.

even with the best available computing power. As a result,
in such cases, the second category of solvers, the iterative
methods are often the only choice. The iterative methods,
gradually update the solution (x) until it converges. The
main focus of this paper is also commonly-used iterative
methods. After proposing our solution for iterative meth-
ods, we discuss the possibility of applying it on direct meth-
ods (Section 7).

Iterative methods. When direct methods for solving PDEs
are not practical, iterative algorithms such as conjugate gra-
dient (CG) methods (e.g., preconditioned CG (PCG), which
ensures fast convergence by preconditioning) are used. An
example of the PCG algorithm for solving Ax = b is shown
in Fig. 3 [1]. The algorithm updates the vector x in m itera-
tions. The execution time of the algorithm is dominated by
two kernels, SpMV and Symmetric Gauss Seidel (SymGS),
which for instance, respectively create 31 and 63 percent of
the total execution time of PCG on an Nvidia K20 [7], [8],
[9]. The remaining kernels, such as the dot product, con-
sume only a tiny fraction of the execution time and are so
ubiquitous that they are already executed using special
hardware in some supercomputers.

To explore the characteristics of SpMV and SymGS, we
use an example of applying them on two operands, a vector
(b1xm) and a matrix (4,,x,). Applying SpMV on the two
operands results in a vector (z;x,), each element of which
can be calculated as

k
Tj= Zb[AT_’LTLdL] X AAT_’UCLll‘j7 (1)
i=1

in which %k, AT -val, and AT _ind are the number of non-zero
values, the non-zero values themselves, and the row indices
of the jth column of A7, respectively. Fig. 4a shows a visual-
ization of Equation (1). Since the elements of the output vec-
tor can be calculated independently, SpMV has the
potential for parallelism. On the other hand, each element
of the vector result of applying SymGS on the same two
operands (i.e., vector b, and a matrix A,,.,) is calculated
as follows, based on the Gauss-Seidel method [10]

1 .771 n
nTAT (b-f—ZA?j xai= 3 Aj xx,“) @
i i=1

i=j+1

Fig. 4b illustrates a visualization of Equation 2 (i.e., the
blue vectors correspond to /| Al x 2} and red vectors

correspond to Y ;| A x x1™"). In fact, calculating the jth

ASGARI ETAL.: EFFICIENTLY SOLVING PARTIAL DIFFERENTIAL EQUATIONS IN A PARTIALLY RECONFIGURABLE SPECIALIZED... 527

t—1
ool

-th -th
J

a

Fig. 4. Calculation of (a) z; in SpMV and (b) rj in SymGS.

element of z at iteration ¢ (i.e., the orange element of z' in
Fig. 4b) depends not only on the values of x at iteration ¢t — 1
(i.e., the red elements of z'~!), but also on the values of zf,
which are being calculated in the current iteration (i.e., the
blue elements of z'). Such dependencies in the SymGS kernel
limit the parallelism opportunity. Although some optimization
strategies have been proposed for employing parallelism [8],
the SymGS kernel can still be a performance bottleneck.

3.2 Key Challenge & Observation
Equation (2) (SymGS) can be written as an extremely simpli-
fied expression that still sustains the dependencies:

columns
T

Xr; =
J=0

The equivalent code for implementing and processing
Equation (3) in a computer would include a nested loop: the
outer loop over the rows of AT (e, 1=0 to rows), and the
inner loop over the columns of AT (ie., =0 to columns).
While the iterations of the inner loop can be parallelized,
the iterations of the outer loop cannot, because of the data
dependencies between them. Fig. 5 demonstrates the depen-
dencies between the iterations of the outer loop. The main
cause of such dependencies is that at each iteration of the
outer loop, we read the entire vector x (Fig. 5, left) and then,
we update one element of x (Fig. 5, right). Therefore, before
reading x, we must wait until it is updated. As a result of
such dependencies, executing this nested loop cannot bene-
fit from the parallelism provided by GPU by employing
common techniques such as loop unrolling. Fig. 6 shows an
example, in which we unroll the outer loop three times, and
assume that a GPU has nine parallel processing units, three
of which are used to process the inner loop. Since the itera-
tions are dependent, three steps are required for processing
the three unrolled iterations, at each of which, only is one-
third of the GPU utilized.

Key observation. A deeper look at the pattern of dependen-
cies in Fig. 5 and the ineffectiveness of a parallel processor
to execute the nested loop quickly, suggests that not all the
operations at each iteration of the outer loop read the newly
updated elements by the previous iterations (Fig. 7a). Based on
this observation, we add blocking as another optimization
on top of the unrolling. As Fig. 7a shows, a block of opera-
tions including the iterations of the inner loop (e.g.,
j=4,5, 6) that depend on the outcome of the previous itera-
tions of the outer loop (e.g., 1=4,5,6), can be excluded
from the other operations (green part in Fig. 7a). The width
of the blocks determines the depth of the unrolling as well
as the iterations of inner loop that are excluded.

Read entire x Update one element of x

for j = @ to columns
sum += A[i][3] * x[3j]
x[1i] = update(sum)

read update

xE T T1] xEE T]

read update
read update
read update

Fig. 5. Dependencies in SymGS: Each iteration of the outer loop reads
the entire vector x (left) and updates one element of z (right). The itera-
tions of the outer loop are dependent.

for i = @ to rows
for j = @ to columns

x[i] = ...

()
o
(e

Unrolling the outer loop

0

i=4 for j =0 to columns x[4]=... Step1

ac

Step 2

- e [fan3e e e Gatimns | (ol

o
4
m

B
(T et o

C

ume
IDLE

Lo

Fig. 6. Limited parallelism: Unrolling the iterations of the outer loop (left)

and mapping the pararellizable iterations of the inner loop to processing
units of a GPU (right).

Step 3

for i = @ to rows

for j = @ to columns DDD

X[i] = ... OO0 step 1
Ciote_)

Unrolling the outer loop and breaking down the inner loop

update ﬁD

L- o [ERSIEEEIE] 5= 6 5, | SIS x(a1=ris i SteP?
____________ -7 U
readpy--~""" update DD

ready--"7T 7T - D
Lo fordeotes Jeat e 3e7twelms ae.. | Sepd
No dependencies. CJLJLJ
(a) These can run in parallel (b)

Fig. 7. (a) Key observation: the iterations of the outer loop are just par-
tially dependent. In fact, only a few iterations of the inner loop read the
newly updated elements. Therefore, we can break down the iterations of
the inner loop across a few unrolled iterations of the outer loop, into
data-dependent part (j = 4, 5, 6), and parallelizable part (green parts);
(b) Key challenge: ineffectiveness of blocking technique on GPUs. More
parallelism at step 1, but dependecies still create the bottleneck through
steps 2, 3, and 4.

Key challenge. Even though based on the key observation,
more parallel operations can be extracted from the target
nested loop, the effort cannot help improve the performance
on GPUs. Fig. 7b clarifies this by mapping parallelizable
operations into the processing units of the GPU. As illus-
trated, even though running the green part in parallel
increases the level of parallelism at step 1, the rest of the
operations still need to wait for the previous steps, which
take three additional steps. Therefore, implementing the
unrolling and blocking can even worsen the execution time
(four steps versus three). This paper seeks to address this

528
()
@ oy 5 €000 step1
b Jj#45,6 C'EE:]
- @00
x_4‘.\\=+ Afyxxy + AlfsXxs + Afexxs 4@ gDLE S}e;/Z

L 890
X5 =®+ AL XTg + AfsXxs + ALexxs 4@ CDLE %” Step 2

X5 = AGyXTg + A5 XTs + AGexxs 4 QQD St
IDLE
il

Fig. 8. Key insight of Alrescha: We divide a large SymGS into a majority
of parallelizable GEMV operations (green) and a minority of small data-
dependent SymGS (pink). We first run the GEMV and then switch to
SymGS. Dependecies still exist in SymGS part but as long as it is small,
we can run them in one step in hardware rather than three steps (@). To
be effective, forwarding the outcomes of GEMV to the SyMGS must be
fast as well (©).

challenge and enable benefiting from the key observation
and the resulting software optimizations (i.e., unrolling and
blocking) by the aid of hardware.

4 ALRESCHA

4.1 Key Insight

Our key insight to resolve the challenge is to reduce the neg-
ative impact of data dependencies on performance by hard-
ware-software co-design, even though we cannot remove
the patterns of data dependencies that naturally exist in a
program. In our example case, for instance, to allow the
unrolling and blocking to be effective, steps 2, 3, and 4 must
be executed quickly, preferably in one step as shown in
Fig. 8. We propose Alrescha, a hardware-software co-design
that divides a SymGS into a large portion of general matrix-
vector multiplications (GEMVs) that can be executed in par-
allel or concurrently and a small data-dependent SymGS.
Since the SymGS part is now small, Alrescha [11] can exe-
cute it quickly in hardware. To be effective in fast execution
of SymGS, Alrescha accelerates (i) the mechanism of imme-
diately using the outcome of operation by the next opera-
tions in the SymGS (z; i, @); and (ii) the mechanism of
using the outcomes of the GEMYV in different operations of
SymGS (2}, ©).

4.2 Main Contributions

This section overviews main contributions of Alrescha to
benefit from the key insight not only in scientific computa-
tions but also in broad applications. The contributions
include the key hardware mechanisms (Section 4.2.1), our
compression format to envision spareness (Section 4.2.2),
broad applications (Section 4.2.3), putting the mechanisms
together in a systematic manner (Section 4.2.4), and the
reconfigurable microarchitecture (Section 4.2.5).

4.2.1 Key Mechanisms in Hardware

After dividing a large SymGS into GEMVs and a small
SymGS, the proposed hardware mechanisms of Alrescha
help to execute them quickly. To explain the mechanisms,
we use a simple example of a SymGS with matrix A oper-
ands shown in Fig. 9a. We focus on processing three rows
of A(i=4,5,6) to calculate corresponding final elements
of x (i.e., T4, @5, and Zg). The green parts of matrix A are the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 4, APRIL 2021

Matrix 4:
[~

[l II.
O Ul
/
/
/

x|
LIFO POP (2)

Fig. 9. Key mechanisms of Alrescha: (a) Matrix A the operand of the
original large SymGS, (b, ¢, d) Executing GEMV and the mechanism for
quickly forwarding the outcome of GEMV to SymGS using a LIFO or
FIFO; and (e, f, g) Executing the small SymGS and implementing the
scheme of data dependencies through the interconnections between
inputs of the tree and the LIFO to quickly execute the small SymGS.

operands to GEMVs, while the pink part is the operand of
the small SymGS.

Parallel & Concurrent GEMV:s. First, Alrescha executes all
GEMV operations that result in the partial outputs (G.e.,
), x5 and zf,). Figs. 9b, 9¢, and 9d show last three steps of the
GEMVs that contribute in creating xy, 2 and 2}, respectively.
Such an order of operations that first performs all the GEMVs
corresponding to rows 4 to 6 before performing the SymGS
corresponding to the same rows, does not impact the func-
tionality and the correctness of the operations as long as the
partial results are correctly aggregated with corresponding
values in the next steps, as explained in the following.

Fast Switch From GEMVs to SymGS. Alrescha facilitates
the mechanism of aggregating the partial results generated
by GEMVs with the partial results of SymGS by using a last-
in-first-out — alternatively, a first-in-first-out buffer can also
be used if compatible orders also reflected in reading the
rows of the matrix. As Figs. 9b, 9¢c, and 9d show, during
GEMV phase, we push the partial results into the LIFO, and
POP them out during SymGS, as illustrated in Figs. 9e, 9f,
and 9g. This mechanism, which prevents extra accesses to
an on-chip cache (with sophisticated addressing require-
ments) or the main memory, provides a smooth switching
between GEMVs and SymGS operations.

Fast Execution of Data-Dependent SymGS. Once all the
GEMVs corresponding to rows 4 to 6 are done, Alrescha
switches to SymGS (the new step 2 in Fig. 8). The nature of
SymGS in step 2 is the same as the GEMVs in step 1,
whereas the individual inputs are not available altogether.
In fact, step 2 is generating its own inputs. Because of the

ASGARI ETAL.: EFFICIENTLY SOLVING PARTIAL DIFFERENTIAL EQUATIONS IN A PARTIALLY RECONFIGURABLE SPECIALIZED... 529

similarity between the GEMV and SymGS, SymGS can use
the same core mechanism of multiplication followed by the
summation-based reduction tree as shown in Figs. 9e, 9f,
and 9g. Besides the core mechanism, Alrescha implemented
the dependencies using some interconnections between the
inputs of the tree and its output. Such interconnection
immediately forwards 7; to the inputs and shifts the old
inputs to the right. this mechanism simply accelerates the
three dependent operations in old steps 2, 3, and 4. Note
that the smallness of SymGS block is important here since
otherwise, the depth of the tree prevents the fast execution.

4.2.2 Compression Format for Sparse PDEs

As explained earlier (Section 3), the matrix A in a linear sys-
tem is often sparse. Therefore, a compression format must be
used to efficiently save the matrix A. On the other hand, we
saw that the hardware mechanisms demand a unique order
of data in matrix A (Section 4.2.1). This section discusses the
compression formats suitable for the target applications and
explains how we slightly modify an appropriate compres-
sion format to sustain the desired order of data, dictated by
our proposed mechanism. According to the distribution of
non-zeros in a sparse matrix, various compression formats
may suit them. For instance, the compressed sparse row
(CSR), which stores a vector of column indices and a vector
of row offsets, locates all the non-zeros independently is the
right choice when the non-zeros do not exhibit any spatial
localities. On the other hand, when all the non-zeros are
located in diagonals, the diagonal format (DIA) [12], which
stores the non-zeros in the diagonals sequentially, could be
the best option. An extension to the DIA format, Ellpack-
Itpack (ELL) [13] is more flexible when the matrix has a
combination of non-diagonal and diagonal elements. For
instance, ELL is used for implementing SymGS in GPUs.
However, such a format does not provide flexibility for par-
allelizing rows as it does not sustain locality across rows.

Since the choice of compression format should be com-
patible with the range of sparse applications, blocked
CSR [14], an extension of CSR, which assigns the column
indices and row offsets to blocks of non-zero values, has
been proposed as a more generic format. Although BCSR is
an appropriate format for scientific applications and graph
analytics in terms of storage overhead, the strategy of BCSR
for assigning indices and pointers, and the order of values,
is not the most appropriate match for smoothly streaming
data in Alrescha. In other words, the main requirement for
fast computation is the order of operations, which in turn,
dictates the data structures to be streamed in the same
order. Thus, we adapt BCSR and propose a new compres-
sion format with the same meta-data overhead but compati-
ble with Alrescha.

Fig. 10 illustrates our proposed compression format for
mapping an example sparse matrix to the physical memory
addresses of the accelerator. In this compression mecha-
nism, all the non-diagonal non-zero blocks in a row of
blocks are stored sub sequentially, followed by a diagonal
block. The non-zero values belonging to the upper triangle
of the non-diagonal blocks are stored in the opposite order
of their original locations in the matrix (see the order of A,
B, and C in Fig. 10). Accordingly, the difference between the
column indices of BSCR and input indices (i.e., Inx;,) of our
proposed format is shown in Fig. 10. For SymGS, the diago-
nal of A is excluded and stored separately in a local cache.

1 AlBlC <Yz same order of values _ X[V[Z
2|D E|[F
3 ™ °
4 C[B|A| §
5 reverse order of values DIEIE ¢%
6 §
7 §
8 ; =
mapping to the 3
9 physical memory Lo
1283456789 E)
o
BCSR: ALRESCHA:
col_index: {1,7,4,8,7} input_index: {7,4,7,8,9}
row_pointer: {1,3,4,6} output_index: {1,4,7}

Fig. 10. Compression format of Alrescha: the col_index of BCSR and
input_index (i.e., Inz;,) of Alrescha are color-coded to show their corre-
sponding blocks in the matrix. Alrescha uses the index of the last column
for the input index of diagonal blocks.

Therefore, we consider non-square blocks on the diagonal
(e.g., 3 x 4 instead of 3 x 3) so that the mapping of the non-
diagonal element of that block to the physical memory is
adjusted. The indices of the input and output (i.e., Inz;, and
Inz,,) are not streamed from memory during run time.
Instead, they are stored in a configuration table during a
one-time programming phase and are used for reconfigura-
tion purposes. As a result, during the iterative execution of
the algorithms, the whole available memory bandwidth is
utilized only for streaming payload.

4.2.3 Broad Applications

Customized hardware has not often been selected as a via-
ble option, except for particular applications such as neural
networks. Instead, general-purpose hardware such as CPUs
and GPUs have usually been used for executing applica-
tions such as scientific computations, even though their per-
formance is dramatically low. A reason for this is the
economic. Extensive customization, which includes high
design and fabrication costs, have been considered expen-
sive solutions for narrow applications, even if such hard-
ware offers significant performance benefits. To deal with
the high cost, we argue that custom hardware solutions
must be generic and applicable to a reasonable range of
applications. This section elaborates on the applicability of
Alrescha for SpMV and graph analytics.

In graph analytics, a common approach to represent
graphs is to use an adjacency matrix, each element of which
represents an edge in the graph. Graph algorithms traverse
vertices and edges to compute a set of properties based on
the connectivity relationships. Traversing is implemented
as a form of a dense-vector sparse-matrix operation. Such
implementations are suited to the vertex-centric program-
ming model [15], which is preferred to the edge-centric
model. The vertex-centric model divides a graph algorithm
into three phases. In the first phase, all the edges from a ver-
tex (i.e., a row of the adjacency matrix) are processed. This
process is a vector-vector operation between the row of the
matrix and a property vector, varied based on the algo-
rithm. In the second phase, the output vector from the first
phase is reduced by a reduction operation (e.g., sum). In the
final phase, the result is assigned to its destination. Since in
many applications not all the nodes in a graph are con-
nected, the equivalent adjacency matrix is sparse, too.

530 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 4, APRIL 2021
TABLE 1
The Properties of Sparse Kernels and Corresponding Dense Data Paths, Implemented in Alrescha
Sparse Sparse Dense Phase 1 (vector operation) Phase 2 Phase 3
Kernel Application Data Paths vector operand1 vector operand2 vector operand3 operation (reduce) (assign)
SymGS PDE solving D-SymGS/ a row of the vector from the vector at multiplication sum apply operation with AT
GEMV coefficient matrix iteration (i-1) iteration (i) and b; and update vector
SpMV PDE solving GEMV arow of the vector from N/A multiplication sum sum and
and graph coefficient matrix iteration (i-1) update the vector
Page Rank Graph D-PR a column of the out-degree the rank vector ~ AND/division sum rank vector update
adjacency matrix vector of vertices at iteration (i-1)
BFS Graph D-BFS a column of the frontier vector N/A sum min compare and update
adjacency matrix distance vector
SSSP Graph D-SSSP a column of the frontier vector N/A sum min compare and update

adjacency matrix

distance vector

Depending on the type of kernel, the operation in phase 1 can use the three vector operands at the same time or use just two of them.

The widely used graph algorithms are SpMV, breadth-
first search (BFS), PageRank (PR), and single-source shortest
path (SSSP). In SSSP, for instance, the vector containing is
updated iteratively by multiplying a row of the matrix by the
path-length vector and then choosing the minimum of the
result vector. After traversing all the nodes, the final values
of the vector indicate the shortest paths from a source node
to all the other nodes. PR iteratively updates the rank vector,
initialized by equal values. At each iteration, the elements of
the rank vector are divided by the elements of the out-degree
vector (i.e., the number of out-going edges for each vertex),
chosen by a row of the matrix, and the result vector is
reduced to a single rank by adding the elements of the vector.

Common Features. While the sparse kernels used in both
scientific and graph applications are similar in having
sparse matrix operands, some kernels (e.g., SpMV) exhibit
more concurrency, whereas others (e.g., SymGS) have sev-
eral data dependencies in their computations. Regardless of
this difference, a common property of kernels is that the
reuse distance of accesses to the sparse matrix is high, while
the input and output vectors of these kernels are being
reused frequently. Moreover, the accesses to at least one of
the vectors are often irregular. The other, and more impor-
tant, common feature of these kernels is that they follow the
three phases of operations iteratively (i.e., vector operation,
reduce, and assign). Table 1 summarizes these phases for
the main sparse kernels, as well as the operands and the
operations at each phase. The sparse kernels calculate an
element of their result by accessing a row/column of the
sparse large matrix only once and then reuse one or two
vector/s for the calculation of all output vector elements.
We benefit from the common features to generalize our pro-
posed hardware without significant overhead. Alrescha
converts the sparse kernels into the dense data paths, listed
in the second column of Table 1 (details in the following).

4.2.4 Putting Them Together for Sparse PDEs

Alrescha is a memory-mapped accelerator, the memory of
which is accessible by a host for programming. Fig. 11 shows
an overview of Alrescha, the host, and the connections for
programming and transferring data. The programming
model of Alrescha is similar to offloading computations
from a CPU to a GPU. To program the accelerator, the host
launches the sparse kernels of sparse algorithms (e.g., PCG)

Host Alrescha

Binary file including a program
sequence of dense data paths | interface | Cofiguration table of

Program including [:>

(i.e., GEMV, D-SymGS, D-BFS, ALRESCHA
SymGS(), SpMV(), D-SSSP, and D-PR)
BFS(), SSSP(), and data
AR DT [:> Matrix operand in Alrescha interface Memory of
storage format ALRESCHA

Fig. 11. The overview of Alrescha and host.

to the accelerator. To do so, the host first converts the sparse
kernels into a sequence of dense data paths and generates a
binary file. Then, the host writes the binary file to a configu-
ration table of the accelerator through the program interface.

During the execution of an algorithm, repetitive switching
between the dense data paths is required. The key feature of
Alrescha to enable fast switching among those dense data
paths is the real-time partial reconfigurability. The details of
the reconfigurable microarchitecture of Alrescha and the
mechanism of real-time reconfiguration are explained in Sec-
tion 4.2.5. Besides switching among the data paths during
runtime, Alrescha also reorders the dense data paths to
reduce the number of switches. Such a reordering necessi-
tates the new compression format, introduced in Sec-
tion 4.2.2. Therefore, the other task of the host is to reformat
the sparse matrix operands into the compression format con-
sisting of blocks, each of which corresponds to a dense data
path. The formatted data is written into the physical memory
space of the accelerator through the data interface (Fig. 11).

Since the target algorithms are iterative, the preprocessing
(i.e., conversion and reformatting) is a one-time overhead.
Besides, the complexity and effort of preprocessing depend
on the previous format, data source, and host platform. For
instance, the conversion complexity from frequently-used
storage formats (e.g., CSR and BCSR) is linear in time and
requires constant space. Since the preprocessing complexity
is linear, it can be done while data streams from the memory.
Moreover, if data is generated in the system (e.g., through
sensors), it is initially be formatted in the Alrescha format
and reformatting is not required.

Algorithm 1 shows the procedure for converting a sparse
matrix to dense data paths. The general procedure of the con-
version algorithm is as follows: (i) As lines 8 to 12 show, the
sparse kernels with no (or straightforward) data dependen-
cies including SpMV, BFS, SSSP, and PR are broken down
into a sequence of general matrix-vector multiplication

ASGARI ETAL.: EFFICIENTLY SOLVING PARTIAL DIFFERENTIAL EQUATIONS IN A PARTIALLY RECONFIGURABLE SPECIALIZED... 531

Algorithm 1. Convert Algorithm

1: function Convert(KernelType, A,x ,,)
Ayt sparse matrix, o : block width
DP: Data path type
12: left to right, r2l: right to left

2: Inzy, = 0,Inx,, =0
3: Blocks[] = Split(A, w) // partitions A to x o blocks
4 m=n/w
5: for(i=1,i < m,i++)do
6: for(j=1,i < m,j++) do
7 if (nnz(Blocks[i, j]) > 0) then
8: if KernelType ! = SymGS then
9: DP = KernelType.DataPath
10: Inz;, = 1.0, Intys = j.w
11: Order = 12r
12: Op = portl // the operand vector
13: else
14: if (i! = j) then
15: DP = GEMV
16: Inx;, = j.w
17: Inz,;: = —1 // no write to cache
18: Order = 12r
19: if (i > j) then
20: Op = port2 / /which is zt~!
21: else
22: Op = portl //which is z*
23: else
24: DP = D-SymGS
25: Inzy, = jow, Intes = (i+1).0
26: Order = r2l
27: Op = port2 / /which is 2~
28: Add2Table(DP, Inx;,, Inty,, Order, Op)

(GEMYV), dense BFS (D-BFS), dense SSSP (D-SSSPs), and
dense PR (D-PR), respectively. These dense data paths have
the same functionality as their corresponding sparse kernels
do; however, they work on non-overlapping locally-dense blocks
of the sparse matrix operand and overlapping sub-vectors of the
dense vector operand of the original sparse kernel. (ii) As
lines 13 to 26 show, the sparse kernels with data dependencies
(e.g., SymGS kernel) are broken down into a majority of paral-
lelizable GEMYV (lines 14 to 21) and a minority of sequential
dense SymGS (D-SymGS) data paths (lines 23 to 26).

The conversion for SymGS is to assign GEMVs to non-
diagonal non-zero blocks (line 15) and D-SymGS to diago-
nal non-zero blocks of the sparse matrix (line 23). For accel-
erating SymGS, the key insight of Alrescha is to separate
GEMV from D-SymGS data paths to prevent the perfor-
mance from being limited by the sequential nature of the
SymGS kernel. To this end, Alrescha reduces switching
between the two data paths (GEMV and D-SymGS) by reor-
dering them so that Alrescha first executes all the GEMVs in
a row successively and then switches to a D-SymGS. The
distributive property of inner products in Equation (2) guar-
antees the correctness of such reordering. As an example of
the outcome of Algorithm 1, Fig. 12 shows the state machine
of PCG, equivalent to the algorithm in Fig. 3, which com-
prises three sparse kernels, two of which are the focus of
this paper and are launched to the accelerator by the host.
The configuration table for a SymGS example is shown in
Fig. 12. Based on Equation (2) and as lines 19 and 21 of

poa ‘ Py 12 3| 4[5 6789 DP In@in Indoy; Order (t)p .
2 i GEMV 7 - i2r gt~
@ @ 2 D — SymGS 4 1 r2l xt_l
| T | D-SymGs 7 4 ra gt
) 7 GEMV 3 - 3 gt
8 | D— SymGS 9 7 o gt

Fig. 12. The order of operations: An example of the configuration table
for a SymGS kernel, in whichn =9, v = 3.

Algorithm 1 indicate, all the non-zero blocks in the upper
triangle of A have to be multiplied by z!, and all of those in
the lower triangle have to be multiplied by /.

4.2.5 Reconfigurable Microarchitecture

This section introduces the microarchitecture of Alrescha.
The key feature of the proposed microarchitecture is partial
reconfigurability. The benefit of this feature is two-fold. First,
for SymGS, we have seen that the building blocks of GEMV
and SymGS require a common core hardware mechanism.
Besides, the GEMVs create a big portion of operations.
Therefore, as long as Alrescha is performing subsequential
GEMVs, it does not have to select what to do neither by
decoding an instruction, nor by selecting a path in the hard-
ware. The second benefit of partial reconfiguration goes to
the other applications (e.g., graph kernels) that also share a
core hardware mechanism. As a result, Alrescha can simply
perform other applications (or one application including dis-
tinct kernels) without needing to change the entire hardware.
Reconfiguring only a fraction of the entire data path reduces
the configuration time. To achieve the goal of partial recon-
figuration, Alrescha consists of a separate fixed computation
unit (FCU) and a reconfigurable computation unit (RCU)
and configuring only the former for switching between data
paths (Fig. 13).

The FCU streams only the dense blocks of the sparse matrix
(i.e., no meta-data) from memory and applies the required
vector operation (i.e., phase 1 in Table 1). The FCU includes
ALUs and reduce engines (REs). The seven REs are con-
nected in a tree topology (i.e., the REs are the nodes of a
reduction tree.) The interconnections between the REs of
the FCU are fixed for all data paths and do not require
reconfiguration. The reduction tree is fully pipelined to
yield the speed of the streaming data from memory. One of
the inputs of ALUs (i.e.,, the matrix operand) is always
streamed from memory, and the other input/s (i.e., the vec-
tor operands) comes from the RCU. The former input of the
ALU requires a multiplexer because, at run time, its input
might need to be changed. For example, only during initial-
izing the D-SymGS does that input come from the cache
(i.e., x!~1); after the initialization, that input comes from a
processing element in the RCU and a forwarding connec-
tion between the inputs of the multipliers. For GEMV, on
the other hand, the ALU requires the multiplexers to choose
between z'~! and z' during run time.

The responsibility of the RCU is to handle the specific
data dependencies in different kernels. The RCU includes a
cache, buffers, processing elements (PE), and a configurable
switch, which determines the interconnection between the
units in the RCU. The configurable switch is not a novel
approach here and is implemented similarly to those of
FPGAs and is directly controlled by the content of a configu-
rable table. The root of the reduction tree from FCU is one of
the inputs to the configurable switch, the other inputs and

532

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 4, APRIL 2021

CONFIG. COMPUTE UNI P

Example Matri:

— Memot
It | |_|_. : : : ry

o
Cache i vlz] st ,
Write address generator __Dual-port SRAM [by @ [TTTTTT]
out |nx 64 Bytes Data 0 ”
oﬂsel Interface || | @ Ajjl:l:lj"
acoess order- b
Read address generator] A I O § stack[| | | ©)
(link buffer)
il i @ RCU Fcu
gl ALU (b)
8| chip 1
H
o t_],—l—l—l—l—l—l—l Memory
5L +
= = [.
BT 32 bits 32 bits 32 bits i © bl ;
A 5Gbps 5Gbps '5Gbps,” = @
S ¥ / % % stack[[[11 = E
5 ° - & (link buffer)
1 S =
g S &l AU ALU 2 }.. -‘ ALU 8 =
99 0
o2 > al —
3) 5
g o
i3 [O
SE H Fixed Interconnect (Tree Topology)] - S Out-Degree|
g g l) [RX] 1 (=]
o 3
£ 2 (Re1) ((re2] (RE3) HEEE = §stack[[[]
(= T & (ink buffer)

RCU

(@)

(d)

Fig. 13. The microarchitecture of Alrescha: (a) the FCU for implementing common computations, and the RCU for providing specific configuration for
distinct dense data paths. Three example configurations for supporting: (b) D-SymGS, (c) GEMV, and (d) D-PR.

outputs of which are the PEs, cache, stack, FIFOs, and
ALUs. This switch is the only reconfigurable component of
Alrescha. The reconfiguration time of this switch is approxi-
mately 0.3 ns at 90nm technology based on Xilinx Virtex-4.
Therefore, the reconfiguration process is hidden by the
draining of the tree in FCU. The cache stores the vector
operands, which require addressable accesses (e.g., /!, 2,
and b), whereas the buffers handle vector operands, which
require deterministic accesses. For instance, we employ
first-in-first-out for A]TJ and b, and use a last-in-first-out stack
for the link buffer. The link buffer establishes transmissions
between the dense data paths. For data path transmission,
the reduction tree has to be drained, during which the
switch is reconfigured to prepare it for the next data path.
Therefore, the latency of configuration is hidden by the
latency of draining the adder tree. The PEs of the RCU is
implemented by look-up tables (LUTs) to provide multipli-
cation, division, summation, and subtraction. Figs. 13b, 13c,
and 13d illustrate the configuration of the RCU for perform-
ing D-SymGS, GEMYV, and D-PR.

5 RELATED WORK

Before moving to performance evaluation, we overview the
prior proposals including software and hardware optimiza-
tions for sparse scientific computations, SpMV, and graph
analytics.

Software Optimizations. To date, many software-level opti-
mizations for CPUs [16], [17], [18], GPUs, [8], [19], [20], [21],
[22], and CPU-GPU systems [23] have been proposed to
deal with the challenges arisen by sparseness such as irregu-
lar memory accesses. To relax irregular memory accesses,
software optimizations such as partitioning and batching
have been proposed. Such approaches batch the accesses
and restrict them to a localized region of memory [24].
However, software optimizations alone cannot effectively
handle the data-dependent operations, the main source of
low performance in scientific computations. Furthermore,
optimizations for extracting more parallelism and band-
width such as matrix coloring [8] and blocking [14] have not
been effective enough for the aforementioned reason.

Hardware Accelerators. The ineffectiveness of CPUs and
GPUs, along with approaching the end of Moore’s law, has
motivated the migration to specialized hardware for sparse
problems. For instance, hardware accelerators have targeted
sparse matrix-matrix multiplication [25], [26], [27], [28],
matrix-vector multiplication [29], [30], [31], [32], or both [3],
[33], [34], which are the main sparse kernels in many sparse
problems. A state-of-the-art SpMV accelerator, Outer-
SPACE [3], employs an outer-product algorithm to minimize
the redundant accesses to non-zero values of the sparse matrix.
Despite the speedup of OuterSPACE over the traditional
SpMV by increasing the data reuse rate and reducing memory
accesses, it produces random access to a local cache. To effi-
ciently utilize memory bandwidth, Hegde et al. proposed
Extensor [33], a novel fetching mechanism that avoids the
memory latency overhead associated with sparse kernels.
Song et al. proposed GraphR [4], a graph accelerator, and Fein-
berg et al. proposed a scientific-problem accelerator [2], both of
which process blocks of non-zero values instead of individual
ones. Besides, Huang et al. have proposed analog [35] and
hybrid (analog-digital) [36] accelerator for solving PDEs.
Moreover, many processing-in-memory studies [37], [38], [39],
[40], [41] proposed offloading computation to memory to
reduce the computation energy of sparse problems. The prior
specialized hardware designs often have not focused on
resolving the challenge of data-dependent computations in
sparse problems that prevent benefiting from the available
memory bandwidth. Table 2 compares the most relevant hard-
ware approaches and techniques for accelerating sparse prob-
lems with Alrescha.

6 PERFORMANCE EVALUATION

This section explores the performance of Alrescha by com-
paring it with the CPU, GPU, and state-of-the-art sparse
accelerators. We evaluate Alrescha for both scientific appli-
cations and graph analytics.

6.1 Datasets, Algorithms, and Baselines

We pick real-world matrices with applications in scientific
and graph problems from the SuiteSparse Matrix

ASGARI ETAL.: EFFICIENTLY SOLVING PARTIAL DIFFERENTIAL EQUATIONS IN A PARTIALLY RECONFIGURABLE SPECIALIZED...

533

TABLE 2
Comparing the State-of-the-Art Accelerators for Sparse Kernels

GraphR [4] OuterSPACE [3]

Memristive-Based Row Reordering Matrix ~ Alrescha (our work)

Accelerator [2] Coloring [8]
Application Domain Graph Graph (only SpMV) PDE solver PDE solver Graph and PDE solver
Hardware Multi-Kernel Support x x x x v
BW Utilization Low Moderate Low Moderate High
NOT Transferring x x x x v
Meta-data
Processing Type ReRAM PEs connected ina heterogeneous Memristive GPU Instruction Fixed vector processor
Crossbar high-speed crossbar crossbar and a small
reconfigurable switch
Cache Optimizations For N/A x N/A x v
Frequently-Used Vectors
Partial Reconfigurability x Only for cache x N/A v
hierarchy
Techniques Storage Format 4x4 COO CSR multi-size blocks (64 x 64, ELL 8x8 blocking with fine-
128 x128, 256 x256, grained in-block
512x512) ordering
Resolving Limited N/A N/A x v/ (Instruction-level, v
Parallelism limited by sparsity
pattern)
Collection [42]. The matrices along with their dimensions) TABLE 3 . ‘
and the number of non-zeros (NNZ) are shown in Table 3. Sparse Matrices From SuiteSparse [42] Matrix Collection
We run PCG, which includes the SymGS and SpMV kernels, - T 5 -
on the matrices with a scientific application, and run graph Name Dim.(M) NNZM) Kind
algorithms (i.e., BFS, SSSP, and PR) on the last eight matri- 2cubes_sphere 0.101 1.647 Electromagnetic Prob.
ces in Table 3. We also run SpMV on both categories of data- ~ASIC_100k 0.099 0.954 Circuit Sim.
sets. We compare Alrescha with the CPU and GPU atmosmodm 1.489 10319 Fluid Dynamics
platforms. The configurations of the baseline platforms are ~CoupCons3D 0.416 — 17.277 Structural Prob.
listed in Table 4. For the CPU and GPU, we exclude disk 7St 0.024 0.583 Materials Prob.

. P . ! dielFilterV3real 1.102 89.306 Electromagnetic Prob.
access time. For fair comparisons, we mclu'de necessary op3 0.084 0.463 Thermal Prob.
optimizations, such as row reordering and sultable storage finan512 0.074 0.596 Economic Prob.
formats (e.g., ELL) proposed for the CPU and GPU implemen- GaAcH6 0.061 3.381 Chemistry Prob.
tations. The PCG algorithm and the graph algorithms running HV15R 2.017 283.073 Fluid Dynamics
on GPU are respectively based on the cuSPARSE and ifiss_mat 0.096 3.599 Fluid Dynamics
Gunrock [43] libraries. The graph algorithms running on the light_in_tissue 0.029 0.406 Electromagnetic Prob.
CPU are based on the GridGraph [44] and / or CuSha [45] plat- mono_500Hz 0.169 5036 Electromagnetic Prob.
forms (whichever achieves better performance). offghgre 0.259 4.242 Electrqmagneth .Pr0b~

Besides the comparison with the CPU and GPU, this sec- poission3Db 0.085 2.374 Fluid Dy namics
tion compares Alrescha with the state-of-the-art hardware qa.Sfm. 0.066 1.660 ACO.uSh.CS PrOb'

pares - scircuit 0.170 0.958 Circuit Sim.

accelerators, including OuterSPACE [3], an accelerator for Si34H36 0.097 5156 Chemistry Prob.
SpMYV, G.ra.th [4], a ReRAM-bas.ed gr.aph accelerator, and g0 cF.1465 1.465 21.00 Fluid Dynamics
a Memristive accelerator for scientific problems [2]. To TEM152078 0.152 6.459 Electromagnetic Prob.
reproduce their latency and power consumption numbers, thermomech TC 0.102 0.711 Thermal Prob.
we modeled the behavior of the preceding accelerators Transport 1.602 23.487 Structural Prob.
based on the information provided in the published papers windtunnel en3D 0.040 0.803 Fluid Dynamics
(e.g., the latency of read and write operations for GraphR Xenonl 0048 1.181 Materials Prob.
and Memristive accelerator). We validate our numbers i:lorlrll—orku; 5009 i’%g 251541;;0 gn?recteg grapﬁ

. .) : ollywood- . . ndirected Gra
based on their reported numbers for their configurations to krog-gS 00-logn21 2097 182082 Undirected Multigliaph
make sure our reproduced numbers are never worse than dnot .

. - - - roadnet—-CA 1.971 5.533 Undirected Graph
the.1r reported numbers. Seeking a fair comparison, we 1y ;veronmal 4847 68993 Directed Graph
assign all the accelgrators the same computation and mem- vy, utube 1.134 5.975 Undirected Graph
ory-bandwidth — this assumption does not harm the perfor- pokec 1.632 30.622 Directed Graph
mance of our peers. sx-stackoverflow 2.601 36.233 Dorected Multigraph

6.2 Experimental Setup

Simulation. We convert the raw matrices using Algorithm 1
implemented in Matlab. To do that, we examine block sizes
of 8, 16, and 32 for the range of data sets and choose the block
size of eight because, unlike the other two, 8 provides a

'Dim.: dimension or the number of columns/rows of a square matrix.
2NNZ: the number of non-zero entries.

balance between the opportunity for parallelism and the
number of non-zero values. We model the hardware
of Alrescha using a cycle-level simulator with the

534
TABLE 4
Baseline Configurations
GPU baseline
Graphics card NVIDIA Tesla K40c, 2880 CUDA cores
Architecture Kepler
Clock frequency 745MHz
Memory 12 GB GDDRS5, 288 GB/s
Libraries Gunrock [43] and CUSPARSE
Optimizations row reordering (coloring) [8], ELL format
CPU baseline
Processor Intel Xeon E5-2630 v3 8-core
Clock frequency 2.4 GHz
Cache 64 KB L1, 256 KB L2, 20 MB L3
Memory 128 GB DDR4, 59 GB/s
Platforms CuSha [45], GridGraph [44]
TABLE 5
Alrescha Configuration
Floating point double precision (64 bits)
Clock frequency 2.5GHz
Cache 1KB, 64-Byte lines, 4-cycle access latency
RE latency 3 Cycles (sum: 3, min: 1)
ALU latency 3 Cycles
Memory 12 GB GDDRS5, 288 GB/s

configurations listed in Table 5. The clock frequency is cho-
sen to enable the compute logic to follow the speed of stream-
ing from memory (i.e., each 64-bit operands of ALU are
delivered from memory in 0.4 ns, through the 32-bit 5 Gbps
links.) To measure energy consumption, we model all the
components of the microarchitecture using a TSMC 28 nm
standard cell and the SRAM library at 200 MHz. The
reported numbers include programming the accelerator.

FPGA Implementation. While FPGAs have had the partial
reconfiguration feature for over a decade, fewer applications
have been proposed to use it. Alrescha proposes a new appli-
cation for partial reconfiguration. Our goal is to leverage par-
tial reconfigurability to evaluate the switching between the
different algorithms, without fully reprogramming the
FPGA hence we utilize static partial reconfiguration rather
than a dynamic one — note that dynamic reconfiguration can
also be implemented for SymGS. We implement SymGS and
graph algorithms, the common function of which is a matrix-
vector multiplication. We implement Alrescha using Xilinx
Vivado HLS. We use relevant #pragrma as hints to describe
our desired microarchitectures in C++. We target Xilinx
AC701 evaluation kit, including a partially reconfigurable
Artix-7 FPGA, XC7A200T. We present the post-implementa-
tion resource utilization and power consumption, reported
by Vivado. Inputs and outputs of Alrescha are transferred
through the AXI stream interface. The clock frequency is set
to 200 MHz.

6.3 Execution Time

Scientific Problems. The primary axis of Fig. 14 (i.e., the bars)
illustrates the speedup of running PCG on Alrescha over
the GPU implementation optimized by row reordering [8]
for extracting a high level of parallelism; the secondary axis
of Fig. 14 shows the bandwidth utilization. The figure also
captures the speedup of the Memoristive-based hardware

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 4, APRIL 2021

EALRESCHA TMemristive-based Accel. < ALRESCHA - Memristive-based Accel.

—_ c
o) 100% ©
« B =]
\, ©
2 \ 80% N
o 10.0 A \ /] b 4 N ’ o =
o] / g 360% O
= - =
S . Bl
2 . o e E BB] Ll 40% B
5 Ii A o 1 1 LE g
— . °© T
[1 c
2 @
S 1.0 t 0%
a o x NMFTONOXEE UNVIEEONPOU LT
E] *—O.g%og_o‘—«xmmsxhoé:mmmb—omc <Z(
S goomEanmHEgoommuIvc|Q_ao o
- c5MmoegL> 1205 caoa g NE QO C
ke 2 1E 0> C 8T V=ML 5T Omywnoc>a =
DO 6O >T SO L R~ s i BT o
o W5 o0a58 & E LS 000 nese
©v o< E3 = 'S] HEc- g
el s O o Q9 % A= c
S © O > o £ = c
o — —_ =1
N o = 2 S
< £
2

Fig. 14. Speedup: PCG algorithm on scientific datasets, normalized to
GPU (bar charts), and bandwidth utilization (the lines) compared to the
state-of-the-art accelerator for scientific problems [2].

accelerator [2]. On average, Alrescha provides a 15.6x
speedup compared to the optimized implementation on the
GPU. The speedup of Alrescha is approximately twice that
of the most recent accelerator for solving PDEs. To investi-
gate the reasons behind this observation, we plot memory
bandwidth utilization in Fig. 14. As the figure shows, the
performance of Alrescha and the other hardware accelerator
for all scientific datasets is directly related to memory band-
width utilization — mainly because of the sparsity nature.
Moreover, none of them fully utilize the available memory
bandwidth because both approaches use blocked storage
formats, in which the percentage of non-zero values in a
block rarely reaches a hundred percent. Nevertheless, we
see that Alrescha better utilizes the bandwidth because it
resolves the dependencies in computations, which other-
wise limits bandwidth utilization.

To clarify the impact of resolving dependencies on
overall performance, Fig. 15 presents the percentage of
data-dependent computations in the GPU implementation,
versus that in Alrescha, which has an average of 23.1 percent
data-dependent operations. As the figure suggests, even in
the GPU implementation that extracts the independent paral-
lel operations using row reordering and graph coloring, on
average 60.9 percent of operations are still data-dependent.
This is more than 60 percent for highly-diagonal matrices and
less than 60 percent for matrices with a greater opportunity
for in-row parallelism. Such a trend identifies the distribution
of locally-dense blocks as another rationale for determining
the speedups. More specifically, when the distribution of non-
zero values in rows of a matrix offers the opportunity for par-
allelism, the speedup over the GPU is smaller than when the
matrix is diagonal. Therefore, to conclude, for multi-kernel
sparse algorithms with data-dependent computations, Alre-
scha improves performance by (i) extracting parallelizable
data paths, (ii) reordering them and the elements in the blocks
to maximize the reuse of data, and (iii) implementing them in
lightweight reconfigurable hardware, which results in fast
switching not only between the distinct data paths of a single
kernel but also among them.

Graph Analytics & SpMV. This section explores the perfor-
mance of the algorithms consisting of a single type of kernel
with fewer data dependency patterns in their computations.
Such a study claims that Alrescha is not just optimized for a
specific domain and is applicable to accelerating a wide range
of sparse applications. First, we analyze the performance of
graph applications. Fig. 16 illustrates the speedup of running
BFS, SSSP, and PR on Alrescha, a recent hardware accelerator
for graph applications (i.e., based on GraphR [4]), and GPU, all

ASGARI ETAL.: EFFICIENTLY SOLVING PARTIAL DIFFERENTIAL EQUATIONS IN A PARTIALLY RECONFIGURABLE SPECIALIZED... 535

g [Baseline @ ALRESCHA
0,
> 80%
£
9
5 60%
o
= 40%
=}
c 0/
S 20%
g 0% H
L X N T MANOX £ ON OO 2O wnowwco P oo
2 LogaognHImW:Ihoézmmr\us I 3(
o LOBuegrtaoanmudE2S2moOISTO Ly O o
° < — C5E5MOUCcIL> 208 cm g NE G C
B 2 1EOCRS ®eTu"Pnd So0OmumNsgaeca =
2O g0 >% c o | % 5 o =5 ® x [G]
J58a58 &Y £€c£o063 »8s EL2
<2 E 'S 9 HGEeh e
Rel < O o < o - c <
3 © O] w £ = 2
=3 — —
o~ o -

Fig. 15. Reduction in data-dependent operations: for the PCG algorithm,
after applying Alrescha. The baseline shows the percentage of data-
dependent operations by row-reordering optimization.

normalized to the CPU. As the figure shows, Alrescha offers
average speedups of 15.7x, 7.7x, and 27.6x, for BFS, SSSP,
and PR algorithms, respectively. We achieve this speedup by
avoiding the transfer of meta-data, reordering the blocks for
increasing data reuse and improving the locality. Further, to
run graph applications, Alrescha performs only subsequential
same-type dense data paths that eliminates the need to neither
decode instructions (which is the case for GPUs) nor select a
data path in the hardware.

The primary axis of Fig. 17 (i.e., the bars) illustrates the
speedup of SpMV, a common algorithm of various sparse
applications on Alrescha and OuterSPACE [3] (i.e., the recent
hardware accelerator for the SpMV), normalized to the GPU
baseline. As the figure shows, Alrescha offers average speed-
ups of 6.9x and 13.6x for scientific and graph datasets. When
running SpMYV, all the data paths are GEMV; therefore, no
transmission between data paths is required. However, opti-
mizations of Alrescha help achieve greater performance. The
key optimization here is accesses to the cache to obtain fre-
quent accesses to the vector operand of SpMV. To show this,
the secondary axis of Fig. 17 (i.e., the lines) plots the percentage
of the whole execution time for accesses to the local cache.
Alrescha utilizes locality in cache accesses (i.e., consuming the
values in a cache line in succeeding cycles), and increases the
data reuse rate of not only the input sparse-matrix operands
but also the dense-vector operands and output vector.
Although in the outer-product approach, data read from the
cache is broadcast to all the ALUs, to be reused as many times
as required, before being written back to the cache, an element
of the output vector must be fetched several times. During
such accesses to the cache, the spatial locality of non-zeros is
not captured. On contrary, the approach of Alrescha that
applies GEMV to locally dense blocks of the sparse matrix
instead of working on individual non-zeros takes advantage
of spatial locality in the non-zero values of the sparse matrix.
Besides, Alrescha sums up the results of multiplications
locally, without redundant accesses to the cache. To do so,
Alrescha splits the vector operand into chunks and at each
time step, instead of fetching an individual element, it fetches
a chunk of vector operand from the cache, and instead of
broadcasting, it sends them to individual ALUs. The elements
of a chunk are multiplied by all the non-zero blocks of the
sparse matrix in a row. As a result, each element of the
output vector is fetched from cache only once per #cols/n (n:
chunk size).

6.4 Energy Consumption

A primary motive for using hardware accelerators rather
than software optimizations is to reduce energy

) 18492 HALRESCHA BGraphR OGPU 56
3 27.6
2 15.7
Qd
o
10 77
)
a
(9]
o
9]
>
° 1
=3 CaCdCT OO CaCdaE V9 CadCT V9 wa e
3 JONs'“_om; ZONs‘“_Qw; JONSN_DG)B @ na
o X c IES XL ¥IcESXL ¥IcESxXL auv
2 5g 2520 B5YDL5290F 5ZT@LSEZ0T 29z
Q PO ocwpg3a g ?9 o3 g ? 9 oduvgag3a g z2Z
o g9 £ >0 S £9xT =0 < €9+ <=0 > <Z o
2o T U > o 2o T > o 20T O > <) w <
0 S ® > S ® > S © > w =
S so g2 = Sso g2 = Sso g2 B
=mn o5] =pn o5 [} =nR o5 S SO
2= g S w*= g S ®*= g ©°G
<< 9 << o << o
s % s % s 5
x x X
BFS SSSP PR

Fig. 16. Speedup: graph algorithms on graph datasets over the CPU.
GraphR [4] is the state-of-the-art graph accelerator.

consumption. To achieve this goal, the techniques inte-
grated with the hardware accelerators have to be efficient.
The main resources of energy consumption are instruction
decoding and the accesses to SRAM. Therefore, as explained
in Section 6.3, not only does Alrescha substitutes the
instruction decoding with the ability to switch between the
data paths simply when it is required but also it reduces the
number of accesses to the SRAM cache. While for the sin-
gle-kernel application no kernel switches are required, for
multi-kernel applications the number of switches depends
on the structure of sparsity (i.e., the distribution of non-zero
values in the sparse matrix). The patterns of sparsity and
thus the number of switches impact the energy consumption
of SymGS. The more non-zero blocks in a row of a sparse
matrix (e.g., poisson3Db) that results in a long sequence of
GEMVs or an extremely diagonal sparse matrix (e.g., atmos-
modm) that results in a sequence of D-SymGS data paths
reduce the number of kernel switches and consume less
energy compared to more irregular sparse workloads.
Fig. 18 illustrates the energy consumption of Alrescha for
executing SpMV, normalized to that of the CPU and GPU
baselines. As Fig. 18 shows, on average, the total energy con-
sumption improves by 74x compared to the CPU and 14 x
compared to the GPU. Note that the activity of computing
units, defined by the density of the locally-dense block,
impacts energy but not performance. Therefore, to sum up,
the main reasons for the low energy consumption are the
small reconfigurable hardware of Alrescha in combination
with utilizing a locally-dense storage format with the right
order of blocks and values matched with the order of compu-
tation, thus avoiding the decoding of meta-data and reduc-
ing the number of accesses to the cache and the memory.

6.5 FPGA Resource Utilization & Power
Consumption

Here, we evaluate the implementation of Alrescha on a
partially reconfigurable FPGA (consisting of total 433K
LUTs and 174K FFs), the features of which align with one
another. Table 6 compares the resource utilization and
dynamic power consumption of a static design with a
partially-reconfigurable design including FCU and RCU. As
the table suggests, in the static design, each of the dense data
paths utilizes the resource as much as required. Therefore,
D-PR, which includes division operations, utilizes the most
number of LUTs and FFs and the highest power consump-
tion, whereas D-BFS, which requires the simplest design, uti-
lizes the minimum resources. On the other hand, since in the
partially reconfigurable design, the FCU must envision the

(&)
[
(o)

EALRESCHA [OuterSPACE

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 4, APRIL 2021

> ALRESCHA --OuterSpPACE

SpMV Speedup over GPU (log. scale)

Scientific

% Latency of cache access (log. scale)

Fig. 17. Speedup: executing SpMV on scientific and graph datasets normalized to GPU (bar charts), and the percentage of execution time devoted to
cache accesses (the lines). OuterSPACE [3] is the state-of-the-art SpMV accelerator.

O Normalized to CPU B Normalized to GPU

<+ 100
Q
w
2
oo
[=
S
(O
1%}
& e Q¢ & O 0 (& © $H & <L 9 &
o & § » Q AN
2 v'@goa’og’&‘g% & é”N&A é’@ °”’)°@K\«°Q?’°‘(°’»/\t~/é? & o° N 690(?’»&/5* '~"5*{\\ &
fiv} ;,Q(,,%&co*c,g ,07»07’%%/\‘9& o%oQ,Q,\f;Q,OQAe C PP T 6@
KR PSR N < SERSPCR & o F L NN/ <,0<°\~\$ § SN NS
& NS &7 ®] NN < N EY S
v & N & & & &
. ope N
Scientific & Graph
- R

Fig. 18. Energy consumption: Energy consumption saving of Alrescha normalized to that of CPU and GPU for scientific and graph workloads.

verity of operations, the overall architecture utilizes more
than enough resources for GEMV, D-BFS, and D-SymGS.
The RCU, however, is tailored to each design. Thus, D-
SymGS, with the most complex RCU utilized more resources
that other data paths do. Although in some case, the partially
reconfigurable design utilized more resources, the over-
heads are outweighed by its benefits, especially for multi-
kernel applications such as the PCG algorithm that requires
switching between distinct kernels during the run time. As
the table suggests, the partial reconfigurable implementation
of the simple single-kernel workloads (i.e., SpMV and BFS)
has an overhead of 2.9x more LUT and 1.9 x more FF as well
as 1.2x more dynamic power consumption compared to the
static implementation. On the contrary, for more complex
single-kernel workloads such as PR and the multi-kernel
workloads such as PCG (including SymGS and GEMYV),
the partially reconfigurable implementation is more bene-
ficial as it utilizes 1.2x fewer LUTs and FFs, and con-
sumes 1.15x less dynamic power consumption. Note
that here we show only the core computation unit. How-
ever, the fixed modules involve many other components
of a complete architecture.

7 DiscussiONS & FUTURE WORK

This paper showed how Alrescha can run the iterative meth-
ods for solving PDEs faster hence running more iterations in a
given time and achieving a more accurate solution « for a lin-
ear system Ax = b. Here, we also explore the applicability of
Alrescha on direct methods that are often not practical mainly
because they are extremely slow. However, if a certain compu-
tation platform allows us to execute them quickly, they would
be the preferred methods, which provide the preferred exact
solutions. A key matrix algebra and a bottleneck-prone opera-
tion in the direct methods is matrix inversion. To simplify the

TABLE 6
Resource Utilization and the Total Dynamic Power Consumption
Static Design

GEMV D-PR D-BFS D-SymGS
LUT 2386 8632 2246 3467
FF 6489 10233 4439 7845
Power(W) 0.098 0.115 0.065 0.102

Partially Reconfigurable Design

FCU RCU

GEMV D-PR D-BFS D-SymGS
LUT 6594 271 271 123 645
FF 9771 380 380 320 1594
Power(W) 0.086 0.03 0.03 0.01 0.06

time-consuming matrix inversion, decomposition techniques
such as lower-upper (LU) decomposition are used. In the fol-
lowing, we explore the mechanism using a decomposed
matrix (i.e., the outcome of LU) for calculating the invert of A4,
the involved challenges, and the applicability of Alrescha for
addressing them. LU decomposition factors a matrix as the
product of lower and upper triangular matrices: A = LU.
Therefore, in the following, whenever A is used, it indicates a
matrix consisting of L and U. After decomposition, the inverse
of A can be calculated as A~! = U~ 'L~!. The decomposition
itself is more straightforward and parallelizable compared to
the invert algorithm. Therefore, we focus on the invert algo-
rithm to find possible sources of performance bottleneck.
Fig. 19 lists a simple pseudo-code for LU invert. As illustrated,
it consists of an outer loop for traversing the columns of A
with dimensions of N. The outer loop comprises two inner
loops for traversing A from up to bottom and bottom to top,
respectively. At each of these loops (i.e., phase 1 and phase 2),

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 18,2021 at 19:08:48 UTC from IEEE Xplore. Restrictions apply.

ASGARI ETAL.: EFFICIENTLY SOLVING PARTIAL DIFFERENTIAL EQUATIONS IN A PARTIALLY RECONFIGURABLE SPECIALIZED... 537

for j =0 to N

for i = 0 to N 3
for k = 0 to i %
IA[i][3] = IA[Li][3] - A[L1[k] * IA[Kk][]] =
for i = N-1 to 0

for k = i+l to k 3
IA[L][3] = IA[i]0]] - A[i]0k] * IA[k][]] %
N

IA[i][3] = IA[Li1(3] / A[L1[3]]

Fig. 19. LU algorithm: calculating the inverse of A including two phases
and patterns of read and update accesses to matrix A and IA.

an entire column of invert matrix, I3, and a triangular of A are
read, and simultaneously the same column of IA is updated.
The simultaneous update and read accesses to IA suggests the
same type of data-dependencies as SymGS.

To clarify the pattern of data dependency in the LU algo-
rithm for matrix inversion, we focus on four iterations of
the outer loop in phase 1 for an example of a 4 x 4 matrix
and the patterns of reads and updates for IA, when j = 2.
At each iteration, one element of IA is updated, and the
very same element is read along with other elements of the
same column in the next iteration. This pattern of data
dependency is an extension of dependencies in Fig. 5.
Therefore, our proposed software techniques (i.e., unrolling
and blocking) along with the hardware mechanism for
reducing the negative impact of dependencies is applicable
here. We apply unrolling and blocking to breakdown the
large data-dependent operations into two groups of opera-
tions: parallelizable and small data-dependent. If we unroll
the iterations of the outer loop in phase 1 for b times (b:
block size) and exclude the read operations from IA[1] [J]
to IA[1+b] [j], the rest of operations can be executed in
parallel (or concurrently). After such a separation, Alrescha
first executes b parallel operations, which result in partial
outputs; then, it executes b small dependent operations,
which result in the final outputs (i.e., the final elements of
IA). Besides these key dependencies, matrix inversion cap-
tures other types of dependencies such as dependencies
between the two phases. In future work, we are looking for
addressing them using more high-level solutions.

8 CONCLUSION

This paper proposed, Alrescha, an accelerator for solving
PDEs, the important mathematical methods used in model-
ing physical phenomena in scientific computations. Having
the key feature of partial reconfiguration, Alrescha is the
first multi-kernel accelerator, which indicates that it can exe-
cute a program (e.g., SymGS), consisting of distinct kernels,
by quickly switching the hardware data paths. The partial
reconfigurability of Alrescha also allows it to accelerate
broad applications including graph analytics, SpMV, and
any other problems consisting of the same reduction opera-
tions, by just partially modifying the interconnections
among some of the computation units. As a proof of con-
cept, we emulated Alrescha on an FPGA with a partial
reconfigurability feature. Our experimental results suggest
that for efficiently performing scientific computation
migrating to emerging technologies is not necessary as long
as we can find the sources of performance bottleneck and
prevent them from negatively impacting performance.

ACKNOWLEDGMENTS

The authors would like to gratefully acknowledge the
support of NSF CSR 1526798.

REFERENCES

[1]1 J. Dongarra, M. A. Heroux, and P. Luszczek, “HPCG benchmark:
A new metric for ranking high performance computing systems,”
Knoxville, Tennessee, Tech. Rep. SAND2013-4744, Sandia Nat. Lab.,
2013, pp. 1-11. [Online]. Available: https://library.eecs.utk.edu/
files /ut-eecs-15-736.pdf

[2] B. Feinberg, U. K. R. Vengalam, N. Whitehair, S. Wang, and
E. Ipek, “Enabling scientific computing on memristive acceler-
ators,” in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput. Archit.,
2018, pp. 367-382.

[3] S. Paletal, “OuterSPACE: An outer product based sparse matrix
multiplication accelerator,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit., 2018, pp. 724-736.

[4] L.Song,Y.Zhuo, X. Qian, H. Li, and Y. Chen, “GraphR: Accelerat-
ing graph processing using ReRAM,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit., 2018, pp. 531-543.

[5]1 H. You and H. Zhang, “Comprehensive workload analysis and
modeling of a petascale supercomputer,” in Proc. Workshop Job
Scheduling Strategies Parallel Process., 2012, pp. 253-271.

[6] Nvidia, “NVIDIA tesla GPUs power world’s fastest super-
computer,” 2010, Accessed: Jul. 2020. [Online]. Available: https://
nvidianews.nvidia.com/news/nvidia-tesla-gpus-power-world-s-
fastest-supercomputer

[71 D.Ruiz, F. Mantovani, M. Casas, J. Labarta, and F. Spiga, “The HPCG
benchmark: Analysis, shared memory preliminary improvements
and evaluation on an arm-based platform,” 2018. [Online]. Available:
https:/ /upcommons.upc.edu/bitstream /handle/2117 /116642 /
1HPCG_shared_mem_implementation_tech_report.pdf

[8] E. Phillips and M. Fatica, “A CUDA implementation of the high
performance conjugate gradient benchmark,” in Proc. Int. Work-
shop Perform. Model. Benchmarking Simul. High Perform. Comput.
Syst., 2014, pp. 68-84.

[9] V.Marjanovi¢, J. Gracia, and C. W. Glass, “Performance modeling

of the HPCG benchmark,” in Proc. Int. Workshop Perform. Model.

Benchmarking Simul. High Perform. Comput. Syst., 2014, pp. 172-192.

G. H. Golub and C. F. Van Loan, Matrix Computations, vol. 3. Balti-

more, MD, USA: JHU Press, 2012.

B. Asgari, R. Hadidi, T. Krishna, H. Kim, and S. Yalamanchili,

“ALRESCHA: A lightweight reconfigurable sparse-computation

accelerator,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit.,

2020, pp. 249-260.

Y. Saad, Iterative Methods for Sparse Linear Systems. Philadelphia,

PA, USA: SIAM, 2003.

T. C. Oppe, “The vectorization of ITPACK 2C,” Int.]. Numerical

Methods Eng., vol. 27, no. 3, pp. 571-588, 1989.

R. W. Vuduc and H.-J. Moon, “Fast sparse matrix-vector multipli-

cation by exploiting variable block structure,” in Proc. 1st Int.

Conf. High Perform. Comput. Commun., 2005, pp. 807-816.

G. Malewicz et al., “Pregel: A system for large-scale graph proc-

essing,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010,

pp. 135-146.

K. Akbudak and C. Aykanat, “Exploiting locality in sparse matrix-

matrix multiplication on many-core architectures,” IEEE Trans.

Parallel Distrib. Syst., vol. 28, no. 8, pp. 2258-2271, Aug. 2017.

E. Saule, K. Kaya, and U. V. Catalyiirek, “Performance evaluation

of sparse matrix multiplication kernels on Intel Xeon phi,” in Proc.

Int. Conf. Parallel Process. Appl. Math., 2013, pp. 559-570.

P. D. Sulatycke and K. Ghose, “Caching-efficient multithreaded fast

multiplication of sparse matrices,” in Proc. 1st Merged Int. Parallel

Process. Symp. and Symp. Parallel Distrib. Process., 1998, pp. 117-123.

S. Dalton, L. Olson, and N. Bell, “Optimizing sparse matrix—

matrix multiplication for the GPU,” ACM Trans. Math. Softw.,

vol. 41, no. 4, 2015, Art. no. 25.

F. Gremse, A. Hofter, L. O. Schwen, F. Kiessling, andU. Naumann,

“GPU-accelerated sparse matrix-matrix multiplication by iterative

row merging,” SIAM |. Sci. Comput., vol. 37, no. 1, pp. C54-C71, 2015.

W. Liu and B. Vinter, “An efficient GPU general sparse matrix-

matrix multiplication for irregular data,” in Proc. IEEE 28th Int.

Parallel Distrib. Process. Symp., 2014, pp. 370-381.

K. Matam, S. R. K. B. Indarapu, and K. Kothapalli, “Sparse matrix-

matrix multiplication on modern architectures,” in Proc. 19th Int.

Conf. High Perform. Comput., 2012, pp. 1-10.

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

[21]

[22]

https://library.eecs.utk.edu/files/ut-eecs-15-736.pdf
https://library.eecs.utk.edu/files/ut-eecs-15-736.pdf
https://nvidianews.nvidia.com/news/nvidia-tesla-gpus-power-world-s-fastest-supercomputer
https://nvidianews.nvidia.com/news/nvidia-tesla-gpus-power-world-s-fastest-supercomputer
https://nvidianews.nvidia.com/news/nvidia-tesla-gpus-power-world-s-fastest-supercomputer
https://upcommons.upc.edu/bitstream/handle/2117/116642/1HPCG_shared_mem_implementation_tech_report.pdf
https://upcommons.upc.edu/bitstream/handle/2117/116642/1HPCG_shared_mem_implementation_tech_report.pdf

538

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

W. Liu and B. Vinter, “A framework for general sparse matrix—
matrix multiplication on GPUs and heterogeneous processors,”
J. Parallel Distrib. Comput., vol. 85, pp. 47-61, 2015.

M. Kumar et al., “Efficient implementation of scatter-gather opera-
tions for large scale graph analytics,” in Proc. IEEE High Perform.
Extreme Comput. Conf., 2016, pp. 1-7.

B. Asgari, R. Hadidi, H. Kim, and S. Yalamanchili, “LODESTAR:
Creating locally-dense CNNs for efficient inference on systolic
arrays,” in Proc. 56th ACM/IEEE Des. Autom. Conf., 2019, Art. no. 233.
C. Y. Lin, N. Wong, and H. K.-H. So, “Design space exploration
for sparse matrix-matrix multiplication on FPGAs,” Int. |. Circuit
Theory Appl., vol. 41, no. 2, pp. 205-219, 2013.

Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti,
“Accelerating sparse matrix-matrix multiplication with 3D-
stacked logic-in-memory hardware,” in Proc. IEEE High Perform.
Extreme Comput. Conf., 2013, pp. 1-6.

B. Asgari, R. Hadidi, H. Kim, and S. Yalamanchili, “ERIDANUS:
Efficiently running inference of DNNs using systolic arrays,”
IEEE Micro, vol. 39, no. 5, pp. 46-54, Sep./Oct. 2019.

B. Asgari, R. Hadidi, and H. Kim, “ASCELLA: Accelerating sparse
computation by enabling stream accesses to memory,” in Proc.
Des. Autom. Test Eur. Conf. Exhib., 2020, pp. 318-321.

A. K. Mishra, E. Nurvitadhi, G. Venkatesh, J. Pearce, and D. Marr,
“Fine-grained accelerators for sparse machine learning work-
loads,” in Proc. 22nd Asia South Pacific Des. Autom. Conf., 2017,
pp. 635-640.

E. Nurvitadhi, A. Mishra, and D. Marr, “A sparse matrix vector
multiply accelerator for support vector machine,” in Proc. Int.
Conf. Compilers Archit. Synthesis Embedded Syst., 2015, pp. 109-116.

U. Gupta et al., “"MASR: A modular accelerator for sparse RNNs,”
in Proc. 28th Int. Conf. Parallel Architectures Compilation Techn.,
2019, pp. 1-14.

K. Hegde et al., “ExTensor: An accelerator for sparse tensor alge-
bra,” in Proc. 52nd Annu. IEEEJACM Int. Symp. Microarchit., 2019,
pp- 319-333.

K. Kanellopoulos et al., “SMASH: Co-designing software compres-
sion and hardware-accelerated indexing for efficient sparse matrix
operations,” in Proc. 52nd Annu. IEEEJACM Int. Symp. Microarchit.,
2019, pp. 600-614.

Y. Huang, N. Guo, M. Seok, Y. Tsividis, and S. Sethumadhavan,
“Analog computing in a modern context: A linear algebra acceler-
ator case study,” IEEE Micro, vol. 37, no. 3, pp. 30-38, Jun. 2017.

Y. Huang, N. Guo, M. Seok, Y. Tsividis, K. Mandli, and S. Sethu-
madhavan, “Hybrid analog-digital solution of nonlinear partial
differential equations,” in Proc. 50th Annu. IEEE/ACM Int. Symp.
Microarchit., 2017, pp. 665-678.

F. Sadi, J. Sweeney, T. M. Low,]J. C. Hoe, L. Pileggi, and F. Fran-
chetti, “Efficient SpMV operation for large and highly sparse
matrices using scalable multi-way merge parallelization,” in
Proc. 52nd Annu. IEEEJACM Int. Symp. Microarchit., 2019,
pp. 347-358.

R. Nair et al., “Active memory cube: A processing-in-memory
architecture for exascale systems,” IBM]. Res. Develop., vol. 59,
no. 2/3, pp. 17:1-17:14, 2015.

M. Zhang et al., “GraphP: Reducing communication for PIM-
based graph processing with efficient data partition,” in Proc.
IEEE Int. Symp. High Perform. Comput. Archit., 2018, pp. 544-557.
L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim,
“GraphPIM: Enabling instruction-level PIM offloading in graph
computing frameworks,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit., 2017, pp. 457-468.

J. C. Beard, “The sparse data reduction engine: Chopping sparse
data one byte at a time,” in Proc. Int. Symp. Memory Syst., 2017,
pp- 34-48.

T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, 2011, Art. no. 1.
Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the
GPU,” ACM SIGPLAN Notices, vol. 51, no. 8, 2016, Art. no. 11.

X. Zhu, W. Han, and W. Chen, “GridGraph: Large-scale graph
processing on a single machine using 2-level hierarchical parti-
tioning,” in Proc. USENIX Conf. Usenix Annu. Tech. Conf., 2015,
pp. 375-386.

F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan, “CuSha: Ver-
tex-centric graph processing on GPUs,” in Proc. 23rd Int. Symp.
High-Perform. Parallel Distrib. Comput., 2014, pp. 239-252.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 4, APRIL 2021

Bahar Asgari is currently working toward the PhD degree with the
School of Electrical and Computer Engineering, Georgia Institute of
Technology, Atlanta, Georgia, and is a member of the Computer Archi-
tecture and System Laboratory. As a graduate research assistant under
the supervision of Prof. Sudhakar Yalamanchili and Prof. Hyesoon Kim,
she conducts research in the field of computer architecture. Her
research interests include but are not limited to accelerating sparse
problems and deep neural networks, and scalable memory systems.

Ramyad Hadidi received the bachelor’s degree in electrical engineering
from the Sharif University of Technology, Iran, and the master’s degree
in computer science from the Georgia Institute of Technology, Atlanta,
Georgia. He is currently working toward the PhD degree in computer sci-
ence under the supervision of Prof. Hyesoon Kim at the Georgia Institute
of Technology, Atlanta, Georgia. His research interests include but
are not limited to computer architecture, edge computing, and machine
learning.

Tushar Krishna received the BTech degree in electrical engineering
from the IIT Delhi, India, in 2007, the MSE degree in electrical engineer-
ing from Princeton University, Princeton, New Jersey, in 2009, and the
PhD degree in electrical engineering and computer science from the
Massachusetts Institute of Technology, Cambridge, Massachusetts, in
2014. He is an assistant professor with the School of Electrical and Com-
puter Engineering, Georgia Institute of Technology, Atlanta, Georgia,
with an adjunct appointment with the School of Computer Science.

Hyesoon Kim (Member, IEEE) received the PhD degree in electrical
and computer engineering from the University of Texas at Austin, Austin,
Texas. She is an associate professor with the School of Computer Sci-
ence, Georgia Institute of Technology, Atlanta, Georgia. Her research
areas include the intersection of computer architectures and compilers,
with an emphasis on heterogeneous architectures, such as GPUs and
accelerators.

Sudhakar Yalamanchili (Fellow, IEEE) received the BE degree in elec-
tronics from Bangalore University, India, and the PhD degree in electrical
and computer engineering from the University of Texas at Austin, Austin,
Texas. He was a Regents professor and Joseph M. Pettit professor of
computer engineering with the School of Electrical and Computer Engi-
neering, Georgia Institute of Technology, Atlanta, Georgia. Prior to join-
ing Georgia Tech, Austin, Texas, in 1989, he was a senior and then
principal research scientist at the Honeywell Systems and Research
Center in Minneapolis. He was a member of ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

