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Three-dimensional (3D)-stacking technology and the memory-wall problem have popularized processing-

in-memory (PIM) concepts again, which offers the benefits of bandwidth and energy savings by offloading

computations to functional units inside the memory. Several memory vendors have also started to integrate

computation logics into the memory, such as Hybrid Memory Cube (HMC), the latest version of which sup-

ports up to 18 in-memory atomic instructions. Although industry prototypes have motivated studies for

investigating efficient methods and architectures for PIM, researchers have not proposed a systematic way

for identifying the benefits of instruction-level PIM offloading. As a result, compiler support for recognizing

offloading candidates and utilizing instruction-level PIM offloading is unavailable. In this article, we analyze

the advantages of instruction-level PIM offloading in the context of HMC-atomic instructions for graph-

computing applications and propose CAIRO, a compiler-assisted technique and decision model for enabling

instruction-level offloading of PIM without any burden on programmers. To develop CAIRO, we analyzed

how instruction offloading enables performance gain in both CPU and GPU workloads. Our studies show

that performance gain from bandwidth savings, the ratio of number of cache misses to total cache accesses,

and the overhead of host atomic instructions are the key factors in selecting an offloading candidate. Based on

our analytical models, we characterize the properties of beneficial and nonbeneficial candidates for offload-

ing. We evaluate CAIRO with 27 multithreaded CPU and 36 GPU benchmarks. In our evaluation, CAIRO not

only doubles the speedup for a set of PIM-beneficial workloads by exploiting HMC-atomic instructions but

also prevents slowdown caused by incorrect offloading decisions for other workloads.
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1 INTRODUCTION

In modern computing systems, processors have steadily become more computationally powerful
and energy efficient. However, the bandwidth, latency, and energy consumption of off-chip
memories have not improved at the same rate as processors [34, 41], leading to the memory-

wall [45] problem. To address this problem, a few decades ago, researchers proposed the
processing-in-memory (PIM) concept [13, 17, 22, 33, 36], which reduces the overhead of data
movement between off-chip memories and processors by placing computations near data and
utilizing the abundant in-memory bandwidth. Recently, the concept of PIM has been revisited
because of the advances in 3D-stacking technology [9, 21, 38] and the prevalence of data-intensive
applications, such as graph-computing applications [30]. Recent academic studies have proposed
several PIM architectures and programming models [2, 3, 12, 19, 23, 24, 28, 46]. Memory vendors
have also begun to incorporate PIM techniques such as Hybrid Memory Cube (HMC) [21, 37], High

Bandwidth Memory (HBM) [25, 27], and Active Memory Cube (AMC) [31]. Among the existing
academic and industrial proposals, HMC is a real-world PIM design that enables instruction-level
offloading to the memory with 18 atomic computation instructions (noted as HMC-atomic

instructions) starting with HMC 2.01 [8]. In other words, HMC-atomic instructions enable a host
to offload simple computations to HMC with an instruction-level granularity.

Instruction-level offloading to the memory eliminates unnecessary data movement between host
processors and memories and potentially offers both performance and energy benefits. However,
blindly offloading any candidate instruction is not always beneficial. For example, offloading in-
structions with high data locality usually degrades performance. In fact, in a study by Ahn et al.
(PEI) [3], a hardware-based locality monitor chooses a processing unit, either in the host processor
or memory hierarchy, for the execution of each custom PIM instruction written by a programmer.
In another study, Nai et al. (GraphPIM) [28] showed offloading with HMC-atomic instructions on
CPU is beneficial for graph-computing applications. Although, when compared to PEI, GraphPIM
suggests a design based on a real-world hardware specification and less complexity, similar to PEI,
GraphPIM does not explore candidate properties and selection process. In other words, to achieve
the full potential of instruction-level offloading, identifying proper offloading candidates without
a burden on programmers is crucial, a task which in both PEI and GraphPIM are performed by a
programmer. However, because of the complexity of modern applications, recognizing offloading
candidates is not a trivial task. Therefore, providing compiler support that automates and facili-
tates the selection of offloading candidates is necessary.

In this article, a follow-up to GraphPIM, we extend GraphPIM to GPU workloads and intro-
duce a compiler-assisted technique that facilitates instruction-level offloading on both CPU
and GPU platforms in the context of HMC-atomic instructions for graph-computing applica-
tions. In particular, the challenges of enabling offloading for HMC-atomic instructions include
(i) recognizing all applicable candidates whether beneficial or not when offloaded to the memory,
(ii) identifying the sources of instruction-level offloading benefits and their impact on perfor-
mance and bandwidth, and (iii) selecting beneficial offloading candidates that are compatible
with HMC-atomic instructions. In the context of the HMC 2.0 design, we first analyze and model
the sources of instruction-level PIM offloading benefits such as cache bypassing for low-locality
data, enabling memory bandwidth saving, and avoiding the overhead of host atomic instructions.
Then, we propose CAIRO, a Compiler-Assisted technique and decision model for enabling
InstRuction-level Offloading for PIM for both CPUs and GPUs during compilation time without
any burden on programmers. While we explore instruction-level PIM offloading in the context

1HMC 2.0 [8] differs from HMC Gen2 that follows the HMC 1.1 specification [18]. HMC 2.0 follows a newer specification [8].

HMC 2.0 hardware is not publicly available.
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of HMC-atomic instructions, we can apply the proposed technique to other instruction-level
PIM offloading methods. Furthermore, although we investigate graph-computing applications
because of their inefficient execution on modern systems, our analysis is also applicable to various
applications. The key contributions of our article are as follows:

• We propose the first compile-time technique that selects PIM candidates for instruction-
level offloading in both CPU and GPU platforms.

• We conduct a unified study that ascertains benefits of instruction-level offloading for PIM
on both host platforms of CPU and GPU.

• We propose analytical models for estimating the benefits of instruction-level PIM offloading.
• We evaluate CAIRO by simulating 27 multithreaded CPU and 36 GPU workloads. CAIRO

shows up to 2× speedup for beneficial workloads and no slowdown for non-beneficial work-
loads.

The remainder of this article is organized as follows. Section 2 provides the background on ap-
proaches, HMC, and HMC-atomic instructions. Section 3 describes instruction-level PIM offload-
ing benefits. Section 4 presents our compiler technique, and Section 5 summarizes our evaluation
methodology and results. Section 6 illustrates a case study, and Section 7 summarizes previous
PIM research. Finally, Section 8 concludes the article.

2 BACKGROUND

2.1 Instruction-Level PIM Offloading

Offloading computations to PIM units covers a broad range; in this article, we examine instruction-
level offloading to fixed functions. In instruction-level offloading, the granularity of offloading is
an instruction and PIM units perform fixed-function operations; whereas in kernel- or function-
level offloading, the granularity of offloading is a whole kernel or custom functions such as scatter/
gather and PIM units perform more complex operations. One of the main differences between the
instruction- and kernel-level offloading is whether the memory controller maintains a program
counter. In the instruction-level offloading, all the offloaded computation is sent by extending
memory commands. Therefore, the memory controller does not require any program counter or
capability to access to the instructions of the program. On the other hand, for kernel-level offload-
ing, the memory controller maintains a program counter and must be able to fetch and decode
instructions.

Although each approach has its own restrictions, advantages, and benefits, we focus on
instruction-level offloading, the benefits of which are saving in bandwidth [29], reducing la-
tency [29], increasing in the effective size of system caches, avoiding of the overhead of host atomic
instructions [28], exploiting of memory-level parallelism, an efficient and practical hardware de-
sign [3, 14, 28], and increasing programmability [14, 28]. For instance, when we offload a host
atomic instruction, the parameters of which do not have locality to PIM, first, we save bandwidth
because we do not fetch the parameters of the instruction from the memory subsystem but instead
transmit the instruction, the size of which is smaller than its parameters. Second, the latency de-
creases because instead of bringing the data from the memory, performing the operation in the
processor, and writing it back again to the memory, we only transmit the instruction (in some
cases we might also need an acknowledgment). Third, if the parameters are cache-unfriendly, by
offloading we increase the effective size of the cache. In this article, we examine these benefits and
identify how they correlate with the characteristics of instructions; then we propose a compiler-
assisted technique for identifying instruction-level offloading candidates.
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Table 1. HMC-atomic Instructions in HMC 2.0 [8]

Type Data Size Operation Return

Arithmetic 8/16-byte single/dual signed add w/ or w/o
Bitwise 8/16-byte swap, bit write w/ or w/o

Boolean 16-byte AND/NAND w/o
OR/NOR/XOR w/o

Comparison 8/16-byte CAS-if equal/zero w/
greater/less w/
compare if equal w/

2.2 Hybrid Memory Cube (HMC)

HMC is a collection of DRAM dies with a CMOS logic die fabricated with 3D-stacking technol-
ogy. The dies are vertically connected by several through-silicon vias (TSVs) that provide higher
internal bandwidth, lower latency, and lower communication energy consumption within a cube
than two-dimensional (2D) organizations [21, 37, 46]. Each die is divided into equal partitions,
and a group of vertically connected partitions with a memory controller in the logic die is called a
vault. To interface with the host processor, conventional DDRx uses the bus-based JEDEC protocol,
whereas HMC uses its own communication packet, Flit. Flit-based communication enables HMC
to use serialization and deserialization (SerDes) circuits and reach a higher external bandwidth of
480GB/s according to the HMC 2.0 specification [8]. Starting with HMC 2.0 (with 32 vaults), HMC
supports 18 atomic instructions in addition to conventional memory tasks. For an HMC-atomic
instruction, the memory controller of the corresponding vault basically performs three steps of op-
eration: reads a data from a DRAM location, performs a computation on the data, and then writes
back the result to the same DRAM location. According to the specification, memory controllers
(i.e., PIM units) perform these steps or read-modify-write (RMW) operation atomically within an
HMC package. That is, the corresponding DRAM bank is locked during the RMW operation, so
requests to the same bank must wait and cannot be serviced. Moreover, all PIM operations must
include only one memory operand, and RMW operations are performed on an immediate value
and a memory operand. Table 1 shows HMC-atomic instructions supported in HMC 2.0: arith-
metic, bitwise, Boolean, and comparison instructions. While the data size of these instructions is
16 bytes, some operations also support 8 bytes. Depending on the definition of a specific instruc-
tion, a response may or may not be returned. If the response is returned, it includes a flag that
indicates whether the atomic operation was successful. Also, depending on the instruction, the
original data (i.e., data before modification) may also be returned along with the response.

2.3 Supporting HMC-Atomic Instructions

2.3.1 Candidates for Offloading. As described in Section 2.2, HMC-atomic instructions perform
RMW atomic operations on a single address. An offloading candidate is one instruction or a group
of instructions that can be converted to HMC-atomic instructions. In general, HMC-atomic instruc-
tions support two types of offloading candidates: (A) a group of instructions in a single thread that
perform RMW from/to a single location and (B) generic host atomic instructions. For the first type,
a group of instructions must contain the following instructions: (i) a single load instruction read-
ing data λ from a memory address, (ii) a simple compute operation on λ that can be mapped to an
HMC-atomic instruction, and (iii) a single store instruction writing back λ to the same memory ad-
dress. The second type of offloading candidates are generic host atomic instructions that inherently
perform the aforementioned operations, such as CMPXCHG in x86, SWP in ARM, and atomicCAS
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in PTX. For the host atomic instructions that enforce fence semantics, we add a dependency to the
return value of the converted HMC-atomic instruction to maintain correctness.

2.3.2 Burden on Programmers. To identify and offload HMC-atomic instructions, the underly-
ing architecture must identify offloading candidates that CAIRO detected during compilation. To
carry out this task, we introduce two methods. The first method, similar to GraphPIM [28], is to
mark a memory region as the HMC offloading region and map the host atomic instructions to the
corresponding HMC-atomic instructions in that region during execution. Thus, any host atomic
instruction that accesses the region will be offloaded to the PIM. The second method, similar to
PEI [3], is to employ an ISA extension in the host processor for each HMC-atomic instruction.
Without a compiler support, both methods place the burden of selecting offloading candidates or
regions on the programmer. In fact, because identification of proper offloading candidates requires
careful consideration of multiple factors such as cache performance, bandwidth consumption, and
application behavior, this burden limits PIM applicability. In some cases, HMC-atomic instructions
can violate memory consistency, but, as pointed out by others [26, 28], graph-computing applica-
tions can safely use HMC-atomic instructions. This is because these applications perform read and
atomic instructions at separate execution phases, which naturally prevents consistency violation.
Section 6 provides an example of such applications. Therefore, to extend HMC-atomic instruc-
tions applicability to other applications, the only burden on a programmer is ensuring memory
consistency when instructions are offloaded to HMC.

2.3.3 Cache Policy. Because HMC-atomic instructions directly modify data within the HMC,
we maintain a cache-bypassing policy that ensures a coherent view of offloading targets. In other
words, marking the memory accesses of HMC-atomic instructions as uncacheable causes them to
bypass the cache hierarchy and ensures that a single copy of offloading targets exists. Maintaining a
cache-bypassing policy rather than full coherence caches is also more affordable in terms of design
complexity. (Note that only HMC-atomic instructions bypass caches; the remaining instructions
use the unmodified cache policy of the host.) In fact, following this policy, a programmer should al-
locate irregular data all together to minimize the negative effect of uncaching cache-friendly data.
In this article, irregular data are allocated altogether, similar to GraphPIM [29]. To support the
cache-bypassing policy, we can utilize existing uncacheable (UC) memory support in x86 archi-
tectures [20]. This feature marks corresponding physical pages as uncacheable by setting system
registers (such as MTRRs [20]) through the operating systems [28]. In addition to x86, to support
the cache-bypassing policy, other architectures should support a similar feature. The only differ-
ence between sparse and allocated data in CAIRO would be maintaining a fine-grained coherence
cache policy that increases the complexity. The performance overhead as a result of such com-
plexity depends on the exact coherency mechanism of the underlying architecture, which is an
orthogonal problem. In fact, allocating irregular data together simplifies big-data programs, and it
is a common practice [28].

2.3.4 HMC-Atomic Instruction Extensions. The current HMC specification supports up to 18
simple HMC-atomic instructions with the signed addition operation as the most complex. In
our simulation, each operation in the ALU of a vault takes 3 cycles. During the operation (i.e.,
read, modify, and write), the corresponding DRAM bank is locked to ensure consistency. Also,
additional RMW requests to a vault will be queued in a FIFO buffer within the vault to be serviced
when the ALU is free and the corresponding bank has no outstanding requests. (In our studies,
the required buffer size do not exceed 10 entries per vault.) To determine possible extensions to
current HMC-atomic instructions, we also add a low-cost, high-latency, single-precision (32-bit)
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Table 2. Bandwidth requirements of HMC transactions in flits
(flit size: 16 bytes, or 128 bits) [8]

Type Request Response Total
R

eg
. 64-byte READ 1 flit 5 flits 6 flits

64-byte WRITE 5 flits 1 flit 6 flits

A
to

m
ic

add without return 2 flits 1 flit 3 flits

add with return 2 flits 2 flits 4 flits

Boolean/bitwise/CAS 2 flits 2 flits 4 flits

compare if equal 2 flits 1 flit 3 flits

floating-point addition instruction to the HMC-atomic instructions. We integrate a floating-point
addition to the ALU within each vault with 40-cycle latency. Such integration has been done
before [3, 28], and we verify that its implementation does not violate any power or area constraints.

2.4 Graph-Computing Applications

Several real-world computing problems employ graphs (e.g., social networks and web graphs) for
processing large-scale network data. The diversity and unique characteristics of graph-computing
applications causes different computation behaviors such as graph traversals with a large number
of irregular memory accesses, rich property graphs with heavy computations similar to regular
applications, and dynamic graphs with irregular memory accesses and dynamic memory foot-
prints [30]. In this article, we examine graph-computing applications because of their inefficient
execution on modern systems and their potential for PIM offloading [2, 28]. We extend Graph-
PIM [28] to GPU workloads and propose CAIRO for identifying offloading candidates for both
CPU and GPU workloads without any burden on programmers. Although we investigate graph-
computing applications, the proposed technique and methodology is applicable to other applica-
tions. We leave such thorough analysis to future work and focus on graph-computing applications
in this article.

3 BENEFITS OF OFFLOADING

3.1 Bandwidth Savings

Instruction-level offloading to HMC saves bandwidth for three reasons: (i) we do not fetch
unnecessary cache-line data from memory, (ii) we issue one HMC-atomic instruction instead
of issuing one load and one store instruction to the memory, and (iii) we might save more
bandwidth because we would prevent future coherence messages regarding the data of the
cache line. We ensure offloading targets are cache-unfriendly; therefore, bringing their data
into caches is redundant and wastes system resources. In our technique, we ensure that a can-
didate is cache-unfriendly by profiling its last level cache (LLC) miss ratio that is defined as
MRLLC =

Number of LLC misses/Number of LLC accesses.
To estimate the bandwidth savings from the offloading of HMC-atomic instruction, first, we

describe the communication protocol of HMC and then we provide an analytical model for off-
chip bandwidth. HMC follows a packet-based communication protocol; a packet consists of 16-
byte flow units called flits [8]. Table 2 summarizes the packet sizes for regular memory requests
and HMC-atomic instructions. Now, assume an application with a single offloading candidate.
Let Nc be the number of times that the application executes the candidate. Also, let Nreg be the
number of times that the application executes regular memory requests. Assume α and β are the
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Fig. 1. Difference between bandwidth use of no offloading and offloading cases with various candidate cache
hit ratios and required packets for the target HMC-atomic instruction (δ ).

average LLC hit ratio (i.e., 1 −MRLLC ) of the offloading candidate and regular memory requests,
respectively. In a case without instruction-level offloading support, both the candidate and regular
memory requests and responses (read or write) will consume 6 flits (See Table 2). Therefore, the
regular bandwidth usage (BWreg) for the application is

BWreg = (2Nc (1 − α ) × 6) + (Nreg (1 − β ) × 6) flits. (1)
BWreg: Regular bandwidth usage (without offloading)

Nc : Number of the candidate execution

Nr eд : Number of the regular memory requests execution

α : Average LLC hit ratio of the candidate

β : Average LLC hit ratio of regular memory requests

In this equation, each execution of the offloading candidate contains one read and write instruction,
so we multiply Nc by 2. When we perform a single HMC-atomic instruction, we typically require
three or four flits. By assuming a total packet size of δ flits for a single execution of the offloading
candidate (request and response), the bandwidth usage with offloading (BW offload) is

BWoffload =
(
Nc × δ

)
+
(
Nreg (1 − β ) × 6

)
flits. (2)

BWoffload: Bandwidth usage with offloading

δ : Total packet size of request and response for offloading

a candidate in flits

Therefore, bandwidth savings with offloading is

BWsaving = BWreg − BWoffload

= 12Nc (1 − α ) − δNc = Nc (12(1 − α ) − δ ) flits

=

{
3Nc (3 − 4α ) flits, if δ = 3
4Nc (2 − 3α ) flits, if δ = 4.

(3)

Figure 1 illustrates situations in which offloading saves bandwidth for two different δ values. As
shown, the cache hit ratio and offloading type of a candidate determine the amount of bandwidth
savings. In fact, the cache hit ratio for various candidates depends on the bandwidth requirements,
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Fig. 2. Analysis of performance and bandwidth-savings: Bandwidth-sensitive applications (right side of the
graph) gain performance with increased bandwidth.

system cache hierarchy, and offloading target localities of each. Our simple analytical model shows
that the candidate locality and its type are key factors in the amount of bandwidth savings.

3.2 Bandwidth-Savings Performance Benefits

Increased bandwidth available to the memory has a positive impact on the performance of an
application for two reasons: (i) each memory request has shorter latency because of the reduced
queuing delay, and (ii) the application can issue more memory requests in a cycle. From a sys-
tem perspective, both reasons are translated into shorter latency of memory accesses. However,
from an application perspective, if issuing more memory requests is currently limited by the
low bandwidth of memory, providing more memory bandwidth leads to improvement in perfor-
mance because these types of applications (bandwidth-sensitive applications) exploit memory-level

parallelism (MLP). For applications such as compute-intensive applications, however, enabling
more bandwidth has a small impact on performance (bandwidth-insensitive applications).

Offloading using HMC-atomic instructions provides more available bandwidth to applications.
Bandwidth-sensitive applications gain a major performance benefit by exploiting free bandwidth
enabled by bandwidth savings, but this is not true for bandwidth-insensitive applications, as
Figure 2 depicts. This conceptual graph shows the performance benefit when the bandwidth
of a system increases by a factor of Y and Z . The lines represent a collection of applications
with various average bandwidth utilizations that spans the range of zero to the peak band-
width of the system (SystemBWpeak). We define average bandwidth of an application with
BWavg = (naccess × sizeaccess)/texe, in which naccess is the number of accesses, sizeaccess is the aver-
age size of accesses, and texe is the application execution time. Bandwidth-sensitive applications
naturally have higher average bandwidth utilization than bandwidth-insensitive applications, so

they reside on the right side of the graph, where
BWavg

SystemBWpeak
is high. If we increase SystemBWpeak,

bandwidth-sensitive applications experience a performance gain, while bandwidth-insensitive
applications are not susceptible to the bandwidth increment. In other words, offloading provides
bandwidth savings, which has the same effect as increasing SystemBWpeak. If an application
is on the left side of the graph (i.e., the bandwidth of the application is less than a threshold),
offloading will not result in any performance benefit; thus, the offloading decision must ensure
that the required bandwidth for the application exceeds a certain threshold. In the figure, this
threshold value is t0. The exact value of this threshold depends on the application, architecture,
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Fig. 3. The degradation of speedup for host atomic instructions in graph-processing kernels on an Intel Xeon
E5-2620 machine.

and programming model. In Section 5.2, we will see that CPU workloads tend to be on the left
side of the graph, whereas GPU workloads tend to be on the right side.

3.3 Cache-Related Benefits

Executing HMC-atomic instructions increases the effective cache size by offloading cache-
unfriendly data. We ensure that the offloading candidate is cache-unfriendly by using a cache-
profiling tool. As pointed out in Section 2.3.3, the data of offloaded HMC-atomic instructions are
identified as uncacheable, so they bypass the cache hierarchy and allow more effective use of cache
space. Bypassing the cache also prevents the overhead of unnecessary cache-checking time for the
data of offloading candidates, as GraphPIM [28] showed with a detailed breakdown of applications
execution. We will discuss these points in more detail in the evaluati on section.

3.4 Preventing the Overhead of Host Atomic Instructions

In ARM and x86 architectures, generic atomic instructions incur substantial overhead because of
their consistency and ILP restrictions [28, 44]. Moreover, AMD and NVIDIA GPU architectures
contain this overhead [10, 35]. To ascertain the extent of the overhead in atomic instructions,
similar to Nai’s evaluation [28], we conducted a real machine experiment on an Intel Xeon E5-2620
using graph-processing kernels. We create micro-benchmarks that perform one iteration of each
kernel using either generic atomic instructions (atomic) or regular instructions (nonatomic) and
then execute both versions.2 Figure 3 shows that kernels that the use host atomic instructions suffer
23% more on average in speedup than kernels that use regular reads and writes. This overhead is
mainly because atomic instructions stall the pipeline and drain write buffer to ensure consistency.
Furthermore, the accessed data could be in the shared state in other processors, so another source
of overhead is due to cache invalidation and coherence traffic. Because HMC-atomic instructions
exploit MLP and the programming model of target applications does not require strict sequential
consistency (SC)3, the execution of atomic operation will have less overhead than their execution
on a host [26, 28, 29].

2Note that read and atomic operations phases in micro-benchmarks occur at two different program phases, so naturally

the consistency and correctness issue is avoided in one iteration.
3To support applications that demand SC (not covered in this article) HMC-atomic instructions require the insertion of

memory barriers. Such insertions require support in either the processor or HMC architecture, both of which demand a

new hardware design.
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Fig. 4. Miss ratio of a candidate and the speedup of the offloading over non-offloading case for bandwidth-
insensitive application variants with different generic host atomic instruction densities (ρHA). The variant

with larger ρH A has smaller cutoff miss ratio (MR
′

th
).

4 COMPILER HEURISTICS

In this section, we develop heuristics and propose CAIRO, a profiling-based compile-time
technique for instruction-level PIM offloading. To select proper offloading candidates, CAIRO
examines the application for eligible candidates, estimates the cache miss ratio of each candidate
with a cache profiler, and performs analyses to make offloading decisions.

4.1 Bandwidth-Insensitive Applications Analysis

HMC-atomic instructions enable the benefits of cache bypassing and remove the overhead of host
atomic instructions for bandwidth-insensitive applications, as Section 3 discussed. To determine
the impact of cache bypassing on performance, a key factor is the LLC miss ratio of offloading
candidates. Bypassing the cache for a candidate with a low cache miss ratio causes performance
degradation, whereas offloading for a candidate with a high cache miss ratio provides these benefits
without the negative effect of cache bypassing. In fact, because of the low-locality of offloaded data,
each execution of a candidate in the non-offloading case incurs two high-latency accesses to the
memory (one read and one write back). In other words, offloading hides high-latency accesses by
exploiting MLP and provides more bandwidth to the application. Let us assume an application
has one eligible candidate for offloading. If the candidate has a higher miss ratio, the application
speedup gain by offloading it would be higher than the same candidate with a lower miss ratio.
In Figure 4, we show a first-order approximation of the relationship between the LLC miss ratio
of an offloading candidate and its performance speedup (the offloading over non-offloading case).
In this relationship, MRth is the cutoff miss ratio, which is lower than some miss ratios, with
which the offloading of the candidate improves speedup. For bandwidth-insensitive applications,
we can approximately represent the speedup (SU MR ) and the miss ratio of a candidate (MR) as
SU MR = f (MR), where f (x ) defines a linear relationship. Furthermore, MRth is determined when
SU MR equals zero.

Another benefit of offloading for bandwidth-insensitive applications is preventing the overhead
of host atomic instructions. The amount of speedup gain from removing this overhead depends on
the density of host atomic instructions per memory region (ρH A). Therefore, a first-order approx-
imation of speedup (SU H A) from preventing this overhead is SU H A = д(ρH A), where д(x ) defines
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Fig. 5. Speedup of offloading versus non-offloading case and candidate miss ratio for bandwidth-sensitive
applications.

a linear relationship. Now, since these two source of benefits, SUMR and SU H A, are independent,
gained speedup (SU tot ) from offloading a candidate totals

SUtot = SUMR + SUH A = f (MR) + д(ρH A)

= (C1 ×MR) + (C2 × ρH A) +C3, (4)

SU tot : Total speedup from offloading (bandwidth-insensitive applications)

SUMR : Speedup dependent to the miss ratio of a candidate

SUH A: Speedup from avoiding the overhead of host atomic instructions

f (x ),д(x ): Linear relationship functions

MR: LLC miss ratio of a candidate

ρH A: Density of host atomic instructions per memory region

C1,C2,C3: Machine-dependent constants

where C1, C2, and C3 are machine-dependent constants. In particular, C2 depends on the archi-
tecture and its associated overhead for host atomic instructions. We measure machine-dependent
constants with a single execution of a micro-benchmark on a machine. In Figure 4, we show the
offloading speedup for the same application with a different density of host atomic instruction. Be-
cause offloading also removes the overhead, the application variant with larger ρHA has a smaller

cutoff miss ratio (MRth
′
) than the other variant. In CAIRO, for bandwidth-insensitive applications,

we use Equation (4), or miss-ratio analysis, to check if offloading a candidate is beneficial.

4.2 Bandwidth-Sensitive Applications Analysis

In addition to the miss ratio analysis, we should also determine the performance gain
from bandwidth savings for bandwidth-sensitive applications in our offloading decision (see
Section 3.2). Similar to bandwidth-insensitive applications, we employ the same approach based on
the LLC miss ratio of the candidate to determine the speedup from offloading. Moreover, because
bandwidth-sensitive applications also gain speedup from bandwidth savings, and the amount of
bandwidth savings is directly dependent on the miss ratio of the candidate, such savings are im-
portant in the offloading decision. To analyze this gain, for a given cache miss ratio of a candidate,
we have three decision regions, shown conceptually in Figure 5. If the miss ratio is lower than a
certain threshold (MissRatioL) because the candidate has a high cache locality, we do not offload
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the candidate. Also, if the miss ratio is higher than another threshold (MissRatioH ), since the per-
formance benefits discussed in Section 4.1 is guaranteed, we offload the candidate. However, if
the miss ratio is between the MissRatioL and the MissRatioH , determining the offloading decision
requires more analysis. In Figure 2, bandwidth-sensitive applications are on the right side of the
diagram, so they experience more improvement in performance with more bandwidth savings. We

model this behavior using normalized bandwidth savings (BW
′

saving) as

BW
′

saving =
(BWreg−BWoffload )/BWreg = BWsaving/BWreg, (5)

BW
′
saving: Normalized bandwidth savings

BWreg: Regular bandwidth usage (without offloading)

BWoffload: Bandwidth usage with offloading

where BWsaving and BWreg is calculated as it was in Equation (3). Now, we represent speedup from
the bandwidth savings with a first-order approximation as

SUBW =
(
M1 × BW

′

saving

)
+M2, (6)

SUBW : Speedup from bandwidth savings

(bandwidth-sensitive applications)

BW
′
saving: Normalized bandwidth savings

M1,M2: Machine-dependent constants

where M1 and M2 are machine-dependent constants. We determine the performance gain from
bandwidth savings by using Equation (6), or BW-saving analysis. In summary, for the bandwidth-
sensitive applications, if the miss ratio is betweenMissRatioL andMissRatioH , we use Equation (6)
for the offloading decision. Otherwise, if the miss ratio is larger than MissRatioH we offload; and,
if the miss ratio is smaller than MissRatioL, we do not offload. In this article, for MissRatioH and
MissRatioL we use conservative values of 30% and 80%, respectively. A conservative estimation of
these values increases false positives in performing BW-savings analysis, but it will avoid cases in
which offloading the candidate hurts performance. Note that the described analysis occurs after
analysis of Equation (4), and total speedup is calculated from the sum of SUBW and SUtot . However,
for bandwidth-sensitive applications, SUBW has the highest contribution in the total speedup.

4.3 Eligibility Test

HMC-atomic instructions support two types of offloading candidates: a group of instructions that
perform RMW and host atomic instructions. Following the HMC specifications, we perform the
eligibility test, which consists of a candidate density test that filters out low-density candidates
on the instructions of the application to select eligible offloading candidates. The eligibility test
consists of the following:

(a) Read-modify-write (RMW) test: Ensures that the outcome of converting an RMW oper-
ation on a single target is an HMC-atomic instruction, as pointed out in Section 2.3.1.
Therefore, the existence of all of RMW operation components on the single target is es-
sential. Moreover, this test also checks that offloading the RMW to PIM does not violate
sequential consistency.

(b) Simple-operation (SO) test: Ensures that HMC supports the operation performed on a
candidate. Currently, HMC supports simple atomic operations (Table 1). As discussed in
Section 2.3.4, we added the floating-point addition instruction to the HMC-atomic instruc-
tions.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 48. Publication date: December 2017.



CAIRO: Enabling Instruction-Level Offloading of PIM 48:13

Fig. 6. Overview of CAIRO.

(c) Direct-address limitation (DAL) test: Ensures that HMC-atomic instructions contain a di-
rect memory address for read and write operations (i.e., the address of the operand is
embedded in the instruction code or is accessible during execution); thus, load and store
instructions must follow this limitation. For instance, lw $1, ($10) fails this test because
the value of register $1 is loaded from the memory location whose address is given by the
contents of register $10.

(d) Size-limitation (SL) test: Ensures that the size of the data on which an HMC-atomic in-
struction does computation is 16 or 8 bytes (see Section 2.2). Therefore, the data field
cannot contain multiple variables or a variable larger than 16 bytes.

(e) Candidate-density (CD) test: Ensures that the density of offloading candidates per memory
region exceeds a certain amount so that the performance impact of their offloading will
not be negligible. Note that this is the minimum requirement of the candidate density, and
we will still evaluate Equation (4) during miss ratio analysis.

4.4 Summary of CAIRO

To select proper offloading candidates, CAIRO performs the steps shown in Figure 6. Before run-
ning CAIRO, we run a set of micro-benchmarks that ascertain machine-dependent constants for
our analytical models and the host cache hierarchy. A micro-benchmark is a kernel that consti-
tutes an offloading candidate with a configurable cache miss ratio. For each architecture, we run
the micro-benchmark once to determine machine-dependent constants, which also can be pro-
vided by vendors. Therefore, the overhead of determining the machine-dependent constants is
negligible. After that, we utilize a simple profiler that estimates the LLC miss ratio of memory ac-
cesses and average bandwidth utilization of each candidate during the entire application runtime.4

(Average bandwidth is roughly calculated from the number of misses and the approximation of
execution time.) Meanwhile, CAIRO also performs the eligibility test to identify eligible offloading
candidates. Note that the eligibility test is the only step in CAIRO that depends on the details of the

4Similar to several studies that have utilized an integration of cache profiler with a compilation process, CAIRO can exploit

tools such as Pin [39] or Perf to profile cache miss ratios. However, since applying offloading decisions to an application

depends on an architecture and its characteristics, such integration, while an interesting compiler challenge, is beyond the

scope of this article.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 48. Publication date: December 2017.



48:14 R. Hadidi et al.

Table 3. Simulation Configurations for CPU+HMC and GPU+HMC
Systems

Component Configuration

CPU 16 x86 out-of-order cores, 2 GHz, 4-issue
Cache 32 KB private 4-way L1 data/instruction caches

256 KB private 8-way L2 inclusive cache
16 MB shared 16-way L3 inclusive cache
64-byte cache line - LRU - MESI

GPU 15 PTX SMs, 32 threads/warp, 1.4 GHz
16 KB private L1D, and 1 MB 16-way L2 cache

HMC 1 GHz, 8 GB cube, 32 vaults, 512 DRAM banks [8]
tCL = tRCD = tRP = 13.75 ns, tRAS = 27.5 ns [24]
4 links per package, 120 GB/s per link [8]

ALUs One ALU/vault with units described in Table 1,
and one single-precision floating-point addition/vault

Computation HMC-atomic instructions: 3 cycles
Latency HMC floating-point addition: 40 cycles

PIM hardware, and their implementations are possible with simple compiler passes. Then, CAIRO
analyzes each candidate based on the analysis in Sections 4.1 and 4.2 (i.e., denoted “BW-savings
analysis” and “miss-ratio analysis” in Figure 6). As discussed, candidates in bandwidth-sensitive
applications might need an extra analysis for the selection. Finally, for each candidate and its as-
sociated memory region, CAIRO determines if offloading is beneficial and makes a decision.

5 EVALUATION

5.1 Evaluation Methodology

Because HMC 2.0 hardware is not publicly available, we evaluate CAIRO by performing detailed
timing simulation. To simulate the host-side CPU/GPU architecture, we use MacSim [1], a cycle-
level architecture simulator that supports both CPUs and GPUs. To simulate DRAM timings, net-
work contentions, the HMC structure, and HMC-atomic instructions, we use an in-house 3D
stacked memory simulator based on DRAMSim2 [43], VaultSim. We validated the performance
results of VaultSim using a real prototype of HMC 1.1. We use the Structural Simulation Toolkit
(SST) [40] as the simulation framework for connecting MacSim and VaultSim. Table 3 shows the
configuration of experiments. We model a processor with 16 out-of-order cores, a GPU with 15
SMs, and an 8 GB HMC that follows the specifications of HMC 2.0 [8, 21, 24, 37, 42].

In our evaluation, we use the benchmarks from GraphBIG [30], a comprehensive benchmark
suite covering a wide scope of graph-computing applications for both CPU and GPU. Table 4
shows the selected benchmarks that passed the eligibility test.5 To illustrate why CAIRO does not
offload candidates for benchmarks with a low density of candidates (i.e., benchmarks that fail the
CD test), we also include them in our evaluation. In brief, nine benchmarks are included with nine
CPU workloads and 12 GPU workloads. Note that the same kernel in a GPU (e.g., BFS) might have
different algorithmic implementations (e.g., BFS-twc, BFS-dwc, or BFS-ttc for GPU) [5, 30]. To
better understand the impact of the cache miss ratio and bandwidth savings, we also generate new
workloads with different cache miss ratios for their candidates by integrating a random variable
in the simulator while maintaining the same program behavior. To distinguish these workloads,

5CPU and GPU programs have different program implementations so, even if a CPU benchmark has instructions that pass

the eligibility test, the corresponding GPU benchmark might not have any.
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Table 4. Summary of the Evaluated Benchmarks

Benchmark CPU GPU HMC-atomic

Breadth-first search (BFS)
√ √

† CAS if equal
Degree centrality (DC)

√ √
Signed add

Betweenness centrality (BC)
√

- Floating-point add*
Shortest path (SSSP)

√ √
‡ CAS-if equal

K-core decomposition (KCORE)
√ √

Signed add
Connected component (CCOMP)

√
- CAS-if equal

Page rank (PRank)
√ √

Floating-point add*
Triangle count (TC)

√
- Signed add

Graph coloring (GC)
√

-
CAS-if equal/-
greater/less

†5 Versions. Versions differ in their algorithmic implementation [5, 32].
‡4 Versions (See †).
∗Single-precision floating-point addition extension (Section 2.3.4).

we annotated the end of the name of each workload with “-H” for the original workload, “-M”
for medium miss ratio setting, and “-L” for low miss ratio setting. We use the LDBC graph [11]
(1 M vertices, 900 MB memory footprint) as the input set of the benchmarks. We evaluate 27 and
36 workloads for CPUs and GPUs, respectively, shown in Table 4. In our evaluations, profiling is
done once per workload. Similar to any profiling-based optimizations, selecting a representative
input set is critical. Unless a new dataset dramatically changes the cache behavior, reprofiling is
not necessary. In a real implementation, profiling overhead is associated with tools such as Pin
and Perf, which are widely used and mature enough.

Note that after CAIRO identifies a candidate and marks its offloading region, the offloading pro-
cess on both GPU and CPU is the same. In other words, when a candidate memory instruction (i.e.,
either a host atomic instruction or an instruction resulting from converting a group of instructions)
accesses a region that is marked to be offloaded, the memory controller, instead of issuing regular
memory instruction to the HMC, issues the corresponding HMC-atomic instruction by modifying
the type of the request. Furthermore, since HMC acknowledges the success or failure of the of-
floaded atomic instruction, adding dependency to such instructions is similar to regular memory
requests. Although GPU workloads might fully utilize functional units in the HMC and create a
performance bottleneck, we did not observe such a bottleneck.

5.2 Evaluation of Bandwidth Sensitivity

While bandwidth-sensitive applications gain improvement in performance by increasing available
bandwidth, bandwidth-insensitive applications do not, as discussed in Section 3.2. To illustrate this
point (similar to Figure 2), we measure improvements in speedup when available bandwidth dou-
bles for all workloads (from 8 to 16 GB/s), shown in Figure 7. Each marker in the figure corresponds
to one workload, and the marker shape represents CPU and GPU platforms. As shown, when avail-
able bandwidth doubles, CPU workloads have significantly low bandwidth utilization, so they
gain negligible speedup.6 By contrast, when bandwidth doubles, GPU workloads have high band-
width utilization and their performance is sensitive. Therefore, similar to Figure 2, Figure 7 shows
that while CPU workloads constitute bandwidth-insensitive applications, GPU workloads consti-
tute bandwidth-sensitive applications. For each workload, CAIRO, using micro-benchmarks and

6For more details for the breakdown of architectural behaviors of CPU workloads, see Figure 2 of Nai et al. 2017 [28] and

Figure 11 of Nai et al. 2015 [30].

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 48. Publication date: December 2017.



48:16 R. Hadidi et al.

Fig. 7. Bandwidth sensitivity of CPU and GPU workloads (speedup when bandwidth is doubled from 8 to
16 GB/s; bandwidth is normalized to 16 GB/s).

the cache profiler, identifies the type of the target application, and performs analyses, illustrated
in Figure 6. For the workloads in this article, the distinction between bandwidth-sensitive and
bandwidth-insensitive applications naturally divides CPU and GPU workloads. However, in excep-
tional cases, for an accurate estimation CAIRO needs a recognition decision from a programmer/
vendor.

5.3 Evaluation of CPU Workloads

CPU workloads, shown in Figure 7, constitute bandwidth-insensitive applications. For bandwidth-
insensitive applications, Section 3 explained that offloading enables improvements in performance
because of bypassing the cache and removing the overhead of host atomic instructions, both of
which rely on the cache miss ratio of offloading candidates. To make offloading decisions, CAIRO
derives machine-dependent constants in Equation (4) by performing an experiment with a micro-
benchmark that has one offloading candidate and using a linear regression. Figure 8 shows the
offloading speedup with various LLC miss ratios of the candidate in the micro-benchmark and
the resulting line from the linear regression, represented by the line marked “CPU + atomic”, from
which CAIRO derives the constants. For demonstration, we also perform the same experiment
by assuming zero overhead for host atomic instructions (the line marked “CPU + no-atomic”). As
illustrated in Figures 4 and 8, because offloading prevents the nontrivial overhead of host atomic
instructions, the cutoff miss ratio (MRth-no-atomic) of the no-atomic version is larger than that of the
atomic version (MRth-atomic). In our evaluation, while MRth-atomic remains around 30%, MRth-no-atomic

exceeds 55%. We conclude that the overhead of host atomic instructions is one of the key factors
in determining offloading decisions.

After deriving the machine-dependent constants for miss-ratio analysis, CAIRO performs miss-
ratio analysis and makes offloading decisions for CPU or bandwidth-insensitive workloads. To
illustrate, Figure 9 shows all the workloads and the line for the miss-ratio analysis, which is the
resulting line from the linear regression (“CPU + atomic” line in Figure 8). As shown, for work-
loads with a miss ratio lower than the cutoff miss ratio (MRth−atomic ), CAIRO decides to not offload
their candidates, whereas for workloads, for which miss ratio exceeds the cutoff miss ratio, CAIRO
offloads candidates. As pointed out in Section 5.1, to explain why CAIRO does not offload candi-
dates with low density per memory region (i.e., those that fail the CD test so they are not eligible
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Fig. 8. Measuring machine-dependent constants with a micro-benchmark. “CPU + no-atomic” means the
overhead of host atomic instructions is assumed to be zero.

Fig. 9. CAIRO decisions for CPU workloads. The dotted line represents the linear regression from the miss-
ratio analysis.

candidates), we also evaluate workloads that contain these kind of candidates, such as KCORE-M/L,
TC-M/L, and BC-M. In Figure 9, we observe that these workloads experience almost no speedup
with offloading; thus, CAIRO filters them out during the CD test.

Offloading decisions of CAIRO and resulting speedup are summarized in Figure 10. The
results are sorted by the average LLC miss ratio of candidates in each workload. As mentioned in
Section 5.1, for the evaluation, we generate workloads with different cache miss ratios and marked
them with “-H” for the original workload, “-M” for a medium miss ratio setting, and “-L” for a low
miss ratio setting.7 In the evaluation, we compare CAIRO with two naïve methods: (i) disabling
offloading, denoted as the “no-offloading” method; and (ii) offloading all eligible candidates,

7Since we are covering a broad range of candidate miss-ratios, we profile all the workloads shown in Figure 10. However,

for workloads with a larger dataset than LDBC with 1 M vertices (900 MB memory footprint), profiling is unnecessary. This

is because the workloads behavior remains the same with a larger dataset. Although we cannot simulate the workloads
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Fig. 10. Summary of CPU workloads with CAIRO (“*” marks benchmarks with low density of offloading
candidates).

denoted as the “all-offloading” method. We observe that while the “all-offloading” decision is
beneficial for high miss ratio settings, it degrades performance for low miss ratio settings. By
contrast, the “no-offloading” decision misses the opportunity for performance speedup in the high
miss ratio setting. However, CAIRO realizes the opportunity and makes an offloading decision that
leads to improved performance. The turning point of CAIRO decisions occurs between PRank-M
and KCORE-M. CAIRO offloads the candidates with cache miss ratios higher than this point,
except for low-density candidates, the workloads of which are marked with a “*” in Figure 10.
Note that since we evaluate the building blocks (i.e., kernels) of graph-computing applications,
our workloads have one potential candidate in each kernel that is executed several times (e.g.,
see Section 6). A complex graph-computing application in a graph framework performs several
traversals, computations, and updates, which is a mix of the building blocks. In Figure 10, we
observe that CAIRO identifies potential candidates, and, based on their characteristics, makes the
correct decision. In sum, for all CPU workloads, CAIRO achieves optimized offloading decisions
and close-to-optimal performance improvements.

5.4 Evaluation of GPU Workloads

GPU workloads constitute bandwidth-sensitive applications, as shown in Figure 7. As discussed
in Section 3.2, bandwidth-sensitive applications also gain speedup from bandwidth saving. There-
fore, CAIRO, after the miss-ratio analysis, performs the BW-saving analysis to make the offloading
decision. Section 4.2 explained that after miss-ratio analysis, CAIRO divides the miss ratio range
to three decision regions. Figure 11 shows the miss-ratio analysis for GPU workloads. To con-
servatively mark the decision regions, we perform miss-ratio analysis on two workloads at the
two ends of the spectrum (i.e., in which the benefits of offloading for BFS-ttc starts at the small-
est cache miss ratio, while same benefits for PRank starts at the highest cache miss ratio). Based
on our findings, for MissRatioH and MissRatioL, we use conservative values of 30% and 80%, re-
spectively. The low miss ratio region always hurts performance, and the high miss ratio region
always improves performance. For the middle region, because of the uncertainty in the speedup
result from miss-ratio analysis, BW-saving analysis is necessary. CAIRO estimates the speedup of
bandwidth-sensitive applications by driving machine-dependent constants in Equation (6) by per-
forming an experiment with a micro-benchmark and using a linear regression. Figure 12 illustrates

with these datasets in a reasonable time, we ensured their behavior, and so CAIRO decisions remain the same by profiling

them.
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Fig. 11. Miss-ratio analysis for BFS-ttc and PRank.

Fig. 12. CAIRO decisions for GPU workloads. The dotted line represents resulting line from linear regression
of the BW-saving analysis.

the micro-benchmark experiment, resulting line from the linear regression, and all the workloads
in a single graph. We derive machine-dependent constants of M1 and M2 in Equation (6) from the
dotted line in the figure. The figure shows that bandwidth-sensitive applications achieve higher
improvement in performance with more bandwidth savings. By utilizing bandwidth savings as a
key metric, CAIRO differentiates workloads and makes the appropriate offloading decision.

Figure 13 summarizes applying CAIRO to GPU workloads, which are sorted according to band-
width savings of each workload when we offload their candidates. Note that each kernel in the GPU
version has multiple algorithmic implementations in which program behavior is not the same [5,
32] (e.g., for BFS:BFS-twc, BFS-dwc, or BFS-ttc [5, 30]). Similar to the CPU evaluation, we com-
pare our technique with two methods: disabling offloading (no-offloading method) and offload-
ing all eligible candidates (all-offloading method). As results show, although different benchmarks
have different bandwidth sensitivity, higher bandwidth savings enables more improvements in
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Fig. 13. Summary of GPU workloads with CAIRO (extra BW-saving analysis step is done for benchmarks
with “-M”).

Fig. 14. The GPU version of instruction offloading for BFS.

performance. Therefore, on the low bandwidth-savings side of the figure, the “all-offloading”
method causes degradation in performance from unnecessary offloading, while at the high
bandwidth-savings side, the “no-offloading” method misses the opportunity for performance im-
provements. However, CAIRO achieves the optimized offloading decision and performance for the
workloads. Note that, for CPU workloads, although offloading enables bandwidth savings, CPU
workloads do not gain speedup from it, as shown in Figure 7. CPU workloads gain the most of
their speedup from bypassing the cache and avoiding the overhead of host atomic instructions,
whereas, besides mentioned sources, GPU workloads also gain benefit from bandwidth savings.

6 A CASE STUDY

Figures 14 and 15 show code snippets of the breadth-first search (BFS) algorithm [30] for GPUs and
CPUs, respectively [29]. The algorithm traverses a given graph and visits all of its vertices once
while checking and updating their properties (graph property [29]). The graph traversal code goes

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 48. Publication date: December 2017.



CAIRO: Enabling Instruction-Level Offloading of PIM 48:21

Fig. 15. The CPU version of instruction offloading for BFS.

through a loop that iterates over its steps in a synchronized way. For the GPU version, the applica-
tion creates an initial frontier list of vertices and launches a CUDA kernel for each BFS step. Then, it
starts a thread for each vertex, and, if the vertex is in the frontier, its neighbors will be checked and
updated. Meanwhile, any unseen neighbor is added to the next frontier. In this algorithm, since all
threads access vertices concurrently, the bandwidth requirement is significantly high. The travers-
ing of the neighbor list, which accesses the graph property, has a low cache hit ratio in addition
to high memory bandwidth requirements. Hence, the code for checking the graph property is a
good candidate for offloading. In fact, each thread generates two HMC-atomic instructions. For
each thread, the generated HMC-atomic instructions are data independent; therefore, their ex-
ecution is overlapped. Similar to the GPU case, for the CPU case the statements modifying the
graph property are offloaded to memory. However, in the CPU case, the HMC-atomic instruction
is inserted by converting a generic host atomic instruction. Moreover, statements following the
host atomic instruction are also offloaded because of a low cache miss ratio. In the CPU case, the
second HMC-atomic instruction is dependent on the first. Therefore, the second HMC-atomic in-
struction is executed only after the completion of the first HMC-atomic instruction. Although this
dependency between HMC-atomic instructions limits their concurrent execution, it prevents the
overhead of host atomic instructions.

7 RELATED WORK

PIM was initiated decades ago with several research proposals and fabricated chips [13, 17, 22, 33,
36]. However, because of fabrication difficulties and less immediate needs, PIM was not adopted
widely by the industry. Recent advances in 3D stacking technology have reignited interest in PIM.
For instance, multiple industry designs such as Hybrid Memory Cube (HMC) [6, 21, 37], High
Bandwidth Memory (HBM) [25, 27], and Active Memory Cube (AMC) [31] have been developed.
Moreover, academia has started to investigate PIM and HMC in particular [2, 3, 4, 7, 12, 15, 16, 19,
23, 24, 28, 46]. For instance, in PEI [3], Ahn et al. proposed a fixed-function PIM for CPU. To support
a set of PIM operations, they add custom-hardware designs to both host processors and memory
hierarchies. In PEI, according to runtime locality monitoring in the custom hardware, PIM oper-
ations will either be processed in the host processor or be offloaded to memory. CAIRO exceeds
the performance gain of PEI with less complexity for CPU benchmarks. Nai et al. discussed this
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gain in more details in their GraphPIM paper [28]. In TOP-PIM [46], Zhang et al. utilized APUs
as both host processors and PIM processors. TOP-PIM builds a performance prediction method-
ology for GPU kernels when they are offloaded to PIM using machine-learning models. While
TOP-PIM studies kernel-level offloading to PIM units that have the same computation power and
features, CAIRO studies instruction-level offloading to PIM units that have simple computational
units based on the HMC 2.0 specification. Nai et al. in GraphPIM [28] followed the HMC specifi-
cation and selected instruction-level offloading candidates manually for a set of graph-computing
benchmarks on CPU. However, they did not propose any mechanisms that determine offloading
candidates and their selection for GPU applications.

Despite numerous proposals about PIM architectures, little effort has been invested in compiler
support for instruction-level offloading of PIM. Most recent research proposals rely on the skills of
programmers to properly utilize PIM functionality. However, as both software and PIM architec-
ture become increasingly complex, such a task will become more sophisticated and error-prone.
To the best of our knowledge, the most relevant work in identifying characteristics for offloading
targets is transparent offloading and mapping (TOM) [19]. Hsieh et al. studied how to efficiently
offload code sections (i.e., kernel-level offloading) in a system with multiple 3D stacked memories,
whereas CAIRO studies instruction-level offloading. In fact, Hsieh et al. provided a straightforward
compiler-based analysis based on cost-benefit calculations that measures potential bandwidth sav-
ings in offloading a block of data. TOM focuses more on the benefits enabled by bandwidth savings
of full-programmable PIM cores. Thus, it is less applicable for instruction-level PIM offloading and
is inherently different from CAIRO. In addition to bandwidth-savings analysis, CAIRO introduces
the overhead of host atomic instruction and the density of the candidates in the offloading decision
and provides a systematic way for identifying offloading candidates.

8 CONCLUSION

Numerous hardware studies have been devoted to PIM research because of the recent advances in
3D-stacking technology, which has motivated various hardware proposals and designs. However,
few studies have focused on compiler support for PIM or recognized the benefits of instruction-
level offloading. To address this research gap, we proposed CAIRO, a technique that selects
instruction-level offloading candidates in the context of soon-to-be commercially available HMC
2.0. Although we showcase HMC for evaluations, CAIRO targets enabling generic instruction-level
offloading for PIM. This is because, in CAIRO, only the eligibility test depends on a PIM architecture
specifications. CAIRO, which investigates and models the benefits of instruction-level offloading, is
composed of a cache profiler, a compile-time analysis phase, and benefit analysis models. The key
factors in offloading decisions are the cache miss ratio of candidates, the bandwidth savings of of-
floading, and the density of offloading candidates per memory region. By evaluating 63 workloads
from graph-computing applications (27 for CPU and 36 for GPU) and measuring improvements in
the performance of CAIRO over that of two naïve methods of always-offloading and no-offloading
cases, we successfully demons trated the effectiveness of this technique.
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