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Various KV compression techniques are used: 
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Mustafar Overview

LLM Inference (Prefill and Decode)
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KV Cache Unstructured Pruning 
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Unstructured Sparse Attention Kernel

LLM Inference (Prefill and Decode)
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• Key cache shows distinct channel-wise outliers.

• ThinK applied channel-wise structured pruning.

§ But can unstructured sparsity do better?

• Pruning direction should be per-token.

Key Cache Observation

Key Cache Magnitude Distribution

Visualization credit to
KIVI (Liu et al. ICML 2024)



DEPARTMENT OF

COMPUTER SCIENCE
7

Mustafar | NeurIPS 2025 | Donghyeon Joo

Key Cache Pruning

• Pruning Strategy #1: Magnitude-based pruning

• Pruning Strategy #2: Output-aware pruning

Per-Token Output-aware Pruning
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Llama-3-8B-Instruct Accuracy on LongBench

• ThinK significantly degrades accuracy at 70% sparsity.

• Both unstructured pruning preserves accuracy. 

• Magnitude-based pruning is selected for runtime efficiency. 
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• Value cache exhibits more uniform distribution.

• ThinK reported to be ineffective.

• Both pruning directions must be explored.

Value Cache Observation

Value Cache Magnitude Distribution
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Value Cache Pruning
• Pruning Strategy #1: Per-channel magnitude-based pruning

• Pruning Strategy #2: Per-channel output-aware pruning

• Pruning Strategy #3: Per-token magnitude-based pruning, is already output-aware!
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Llama-3-8B-Instruct Accuracy on LongBench

• ThinK significantly degrades accuracy at 70% sparsity.

• Per-token magnitude-pruning is both effective and efficient.

• Per-token pruning is jointly applicable with token eviction and quantization.
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Bitmap-based Sparse Format

• Objective #1: Maximally compress unstructured sparse KV cache

• Compress unstructured sparse KV cache with a bitmap-based sparse format.

Figure credit to
Coruscant (Joo et al. MICRO 2025)
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Load-as-compressed, Compute-as-dense Pipeline

• Objective #2: Accelerate memory-bound decode attention computation

• Load from GPU GMEM to SMEM in compressed form, compute as dense in TC.
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• KV cache is pruned and compress on-the-fly. 

Mustafar Sparse Attention Kernel

• Decode attention is computed as a combination of sparse attention on compressed 

cache and dense attention on local dense cache. 
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Evaluation Methodology
• System: NVIDIA RTX 6000 ADA GPU

• Models: 

• Llama-2 7B/13B, Llama-3/3.1-8B-Instruct, Mistral-7B-Instruct-v0.2

• Key Metrics: 

• Accuracy: LongBench and RULER

• Efficiency: Compression ratio, kernel latency, token throughput, TTFT, decode speed 
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Evaluation: Accuracy

• Mustafar preserves accuracy even when both Key and Value caches are pruned.

• Constantly observed across all models tested.
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Evaluation: Compression Efficiency

• Mustafar achieves higher accuracy with better compression compared to ThinK.
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Evaluation: Token Throughput
• Mustafar achieves higher throughput compared to dense with FlashAttention-2.

• KV cache compression allows larger batch size, increasing throughput even more. 

Llama-2 7B Throughput Llama-3 8B Throughput
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Evaluation: TTFT and Decode Speed

• TTFT is delayed due to prefill KV cache pruning and compression. 

• Quickly amortized by accelerated decode.


