
La Superba: Leveraging a Self-Comparison Method
to Understand the Performance Benefits of Sparse

Acceleration Optimizations
Nebil Ozer1, Gregory Kollmer2*,3, Ramyad Hadidi2*, and Bahar Asgari1

1
University of Maryland, College Park

2
Rain AI

3
University of Texas, Austin

Abstract—Evaluation of modern sparse accelerators is
essential for enhancing their performance and guiding
future research. However, modern fine-grained assessments
of individual optimizations within these accelerators re-
main challenging and often lead to inconsistencies between
proposals. To address this issue, we introduce La Superba,
an optimization-granular analysis of prior studies using a
self-comparison technique. La Superba expands existing ap-
proaches for analyzing constituent parts of sparse accelerators
and introduces a set of categorizations for these optimiza-
tions. Our method involves isolating each optimization by
systematically removing it from the accelerator and comparing
the modified accelerator to its original configuration. This
technique is applied to optimizations within three state-of-
the-art sparse matrix multiplication accelerators, identifying
and examining their individual impacts as well as categorizing
them to uncover broader patterns in the performance benefits
they offer. Through targeted case studies, we demonstrate
the performance effects of some of our chosen optimizations,
providing deeper insights into their contributions than those
detailed in the original studies. We conclude the paper by
discussing overarching patterns in optimization structures,
utilizing our categorization as a foundation. By establishing
a structured framework for evaluation, this work not only
clarifies the contributions of specific optimizations but also
provides a valuable tool for future designers and researchers
to systematically assess and innovate within the sparse
accelerator design space.

I. Introduction
Sparse-sparse matrix multiplication (SpGEMM) is a key

component in various application domains such as scientific
computing [1]–[4], machine learning [5]–[14], and big data an-
alytics [15]–[18]. Executing SpGEMM remains challenging [8],
[19]–[21] due to the inherent irregularity and complexity
of sparse matrices, which require efficient handling of non-
zero elements and can lead to computational and memory
access inefficiencies despite compression techniques [7], [22],
[23]. Specialized sparse accelerators [6], [19], [24]–[30] have
been developed to address these inefficiencies. SpGEMM
accelerators are typically characterized by a set of design
choices (optimizations) that give the accelerator an advantage
when operating on sparse datasets [5]–[7], [25], [31]. However,

∗This work was done independently of employment with Rain AI

current evaluation methods for optimizations [7], [31], [32]
frequently evaluate them in non-standard ways that do not
necessarily translate across works. Such evaluations can
overlook important insights hidden in individual optimizations
and make them difficult to organize and compare across
accelerators and implementations.
The high-level research question addressed in this paper

is: "How can we develop quality evaluations of optimiza-
tions that are meaningful, valuable, and simple?" Our work,
La Superba‡, employs a self-comparison methodology to
dissect and evaluate individual optimizations within sparse
accelerators, enabling a deep understanding of how each
design decision contributes to performance improvements
in SpGEMM workloads while still allowing for evaluation
and categorization of optimizations across accelerators. By
expanding existing evaluation methods [5], [6], [8], [33]–
[35], our approach provides a framework to assess the
performance benefits of various SpGEMM optimizations across
diverse datasets, accelerators, and optimization types. Our
findings demonstrate that the behavior of an optimization can
frequently be tied to what part of the accelerator it optimizes.
For example, optimizations that focus on computation become
more critical as inputs become denser and the accelerator
becomes compute-bound. We also found that certain opti-
mizations, initially perceived as impactful, can fail to bring
performance improvements based on input type, highlighting
the importance of holistic evaluation methods.
The key contributions of this work are as follows: (1)

We introduce a method that measures the impact a specific
optimization has on the overall performance of the accelerator.
(2) We introduce a simple categorization framework to
organize and evaluate optimizations by what areas of the
accelerator they target. (3) We identify a set of "case study"
optimizations within recent research where our method
of evaluation could add valuable context. (4) We evaluate
these categories and case studies using our methodology and
showcase how our evaluation adds meaningful insight about
general trends among the optimizations in the targeted papers.

‡La Superba is a red giant star in the constellation Canes Venatici.

1

Ramyad
Author’s Copy

II. Why La Superba?

New accelerator designs frequently incorporate optimiza-
tions from existing designs, leveraging proven strategies
to enhance performance [6], [7], [24]. By categorizing and
evaluating these strategies on a smaller scale – making them
more accessible and practical for researchers to integrate into
their own designs – we provide an evaluation that is easier
to digest and apply. This work not only helps researchers
understand which optimizations contribute most significantly
to performance but also clarifies the specific ways they do
so. Gaining this understanding is crucial, as it offers valuable
insights that can inform design decisions and highlight areas
for further refinement or innovation [13], [36]–[38].
Building on the insights gained from evaluating these

optimizations individually, we categorize and sort them into
groups based on the areas they enhance, determining the
performance metrics affected and the range of improvements
produced by each category, and reporting on general patterns
across a wide population of optimizations. By sorting optimiza-
tions into distinct categories, we can determine which types of
optimizations introduced in these works result in the greatest
performance improvements and conclude why some categories
are more effective for enhancing performance on specific input
types. This categorization also serves as an introduction to a
modular approach for these accelerators, allowing researchers
to identify trade-offs between optimizations within the same
category, as well as synergies with optimizations in other
categories. This refined understanding of the efficacy of each
optimization category ultimately aids in developing more
targeted and efficient sparse matrix multiplication accelerators,
highlighting which categories have historically contributed
the most to speedup, in what conditions this speedup is
maximized, and the extent to which these optimizations
contribute to the overall work.

III. Background & Methodology
This section first introduces the three common matrix mul-

tiplication strategies used in SpGEMM accelerators, followed
by a breakdown of the three optimization categories that our
work introduces. We then provide an overview of all of our
optimizations and introduce our case study optimizations –
specific optimizations we select for a more extensive review.

A. Matrix Multiplication Strategies

Most SpGEMM accelerators use one of three matrix multi-
plication strategies, as presented in Figure 1. Inner product
[31], [39] computes the dot product of rows and columns,
iterating through one row of the A matrix and one column
of the B matrix to accumulate a single scalar value of the C

matrix. This strategy is primarily used in human calculation
of matrix multiplication, as it does not require the saving and
summation of partial outputs. Despite this, inner product is
poorly suited for SpGEMM computations due to its redundant
input fetches [6], [40], which has resulted in a lack of inner
product SpGEMM accelerators. Outer product [6], [19], [26]
on the other hand, iterates through one column of the A

X =

Matrix A

Inner Product

X =Outer Product

X =Row-wise Product

Matrix B Matrix C

Fig. 1: Overview of the three common matrix-matrix multipli-
cation strategies used in SpGEMM accelerators. Thick borders
highlight the rows or columns that each strategy’s outermost
iteration processes to generate corresponding output or partial
output elements.

matrix and one row of the B matrix to produce a partial
result spanning the entire C matrix. All partial matrices are
then merged to obtain the final C matrix. In this context,
merging refers to combining streams of ordered (coordinate,
data) pairs by combining them into an output stream in order
of coordinate, summing values with shared coordinates. Row-
wise product [5], [7], [41] iterates through rows of the A

matrix and multiplies each value with a corresponding row
of the B matrix. The output is a partial row of the C matrix,
with the row coordinate taken from the A matrix and the
column coordinates from the B matrix. When all partial rows
sharing the same row number are merged, a row of the C

matrix is obtained.

B. Optimization Categories

Since each matrix multiplication strategy requires vastly
different dataflows, optimizations come in all shapes and
sizes and operate in largely unique ways [5]–[7], [24],
[27], [31]. Despite this, we posit that nearly every dataflow
optimization found in modern SpGEMM accelerators can be
broadly categorized into a(n) Access, Merge, or Orchestrate
optimization by what purpose it serves within the accelerator’s

Optimization
Category

Area of
Effect Examples

ACCESS Off-Chip
Traffic

- Optimal Data Caching
- Prefetching

MERGE Data
Processing
Techniques

- Parallel Merge Processing
- Efficient MAC

ORCHESTRATE
Internal

Dataflow
- Dynamic Load Balancing
- Data Buffering

Fig. 2: The three categories of optimizations used in La
Superba and their corresponding area of effect and examples.

2

TABLE I: List of optimizations, their categories, what accelerator they stem from (Gamma [5], MatRaptor [7], SpArch [6])
and a description of what they do. Optimizations 3, 7, and 9 are the case studies.

Optimization Category Accelerator/Strategy Description
1. Affinity-Based Reordering Access Gamma/Row-Wise Re-orders rows to improve cache reuse
2. FiberCache Access Gamma/Row-Wise Optimal cache replacement using priority system
3. C2SR Compression Access MatRaptor/Row-Wise Custom compression format to minimize memory waste
4. Lookahead Cache Access SpArch/Outer Spills rows with low temporal locality using a lookahead FIFO
5. High-Radix Merger Merge Gamma/Row-Wise Uses a tree of compute units to merge many inputs at a time
6. Multi-Queue Merging Merge MatRaptor/Row-Wise Reduces merge latency by shuffling values between Queues
7. Array-Based Merger Merge SpArch/Outer Uses Comparator array to improve merge throughput
8. A-Matrix Compression Merge SpArch/Outer "Pre-merges" partial matrices by merging input columns
9. Dynamic Row Scheduler Orchestrate Gamma/Row-Wise Maximizes cache efficiency by parallelizing work on output rows
10. Dual-Phase PE Orchestrate MatRaptor/Row-Wise PEs work on input and output in two decoupled phases.
11. SpAL/SpBl FIFOs Orchestrate MatRaptor/Row-Wise Inputs between matrix loaders are buffered to reduce latency
12. Merge Tree FIFOs Orchestrate SpArch/Outer Stops bottlenecks by buffering values within merge tree

dataflow. The relationship between the three optimization
categories is visualized in Figure 2. Note that these categories
do not indicate where in the accelerator the optimization
occurs, but rather the purpose of the optimization, and what
aspect of the dataflow it aims to improve. Access optimizations
encompass techniques that optimize dataflow by affecting off-
chip memory accesses. Though they can take many forms,
these optimizations can generally be identified through lower
DRAM latency or a reduction in the number of memory
accesses.
Merge optimizations focus on improving the often costly

operations of multiplying/accumulating (MAC) and merging
values within the accelerator. Finally, Orchestrate is a category
for optimizations targeting internal dataflow; alleviating
bottlenecks on-chip, ensuring coordination, balance, and high
utilization within and between hardware components. These
categories nearly always emerge in SpGEMM accelerators in
one form or another, since the majority of the computation
the accelerator does is encompassed by one of these three
categories. For example, Merge optimizations often show up
when merging partial outputs, such as the partial rows gener-
ated in row-wise product. At a high level, Access optimizes
off-chip data movement, Merge optimizes accumulation and
merging of data, and Orchestrate optimizes internal data
movement and workload balance.

C. Introducing Our Optimizations

To investigate our optimization categories, we chose to
examine the twelve optimizations listed in Table I. In our selec-
tion and analysis, for the sake of uniformity, we focus on three
recent proposed architectures targeting ASIC implementation:
MatRaptor [7], Gamma [5], and SpArch [6]. Additionally, we
select optimizations that lend themselves to being isolated
and measured, a counterexample of which would be near-
memory processing, which introduces additional layers of
complexity that are difficult to pick apart and measure. Finally,
we focus only on optimizations that have a meaningful impact
on the accelerator. For example, a multiplier array to speed
up multiplication throughput would be considered effectual
or meaningful. On the other hand, small data buffers in a
noncritical section of the accelerator are important in their

TABLE II: The parameter ranges for the 30 Square Matrices
from SuiteSparse [42].

Sparsity 40% (mbeacxc) - 0.0006% (web-Google)
nonzeros 66 (bcsstm) - 9,080,404 (gearbox)

Row & Column Length 142 (bcsstm) - 916,428 (web-Google)
nonzeros / Row 0.5 (bcsstm) - 100.6 (mbeacxc)

TABLE III: Parameters used to generate our two synthetic
datasets. Matrices are square, so size is reported as a single
side length. S = matrix size, D (%) = density as a percentage
Dataset Const Param Variable Params
Sparsity S - 10000 D (%) - 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001
Size D (%) - 0.1 S - 50, 100, 500, 1000, 5000, 10000, 50000

own way, but offer little value for study and are largely
unimportant in the context of the accelerator as a whole.
In addition to evaluating the broad dataflow optimization

categories, we select a set of three Case Study Optimizations
to analyze at a granular level – optimizations number 3, 7,
and 9 in Table I. These optimizations fulfill two additional
requirements: First, evaluating the optimization must provide
some important insight that was unclear or not expanded on
in the original work. Second, the optimization must be one
of the core contributions of the prior work. This means that
it must be one of the primary optimizations that the work
presents, often being listed as a notable part of the accelerator
within the first few sections, and having a dedicated section
within the work to explain its function. Section V explains
the case-study optimizations in detail.

IV. Experimental Setup
This section describes the metrics, datasets, data analysis

methodology, simulation set up, and validation methodology
used in our studies.

A. Metrics & Datasets

Throughout our experiments, we measure several key
performance metrics. These metrics include the runtime, total
memory accesses, memory bandwidth utilization, and cache
hit/miss rate of the entire accelerator (if applicable), as well

3

TABLE IV: Hardware configurations for the three accelerator simulators.
(a) MatRaptor

Configuration Value
PE Array Size 8
Number of Sorting Queues 20 (2 × 10)
Sorting Queue Sizes 4 KB
Inter-Component FIFO Sizes 0.6 KB
Memory Channels 8

(b) Gamma

Configuration Value
Number of PEs 32
PE Radix 64
FiberCache Size 3MB
FiberCache Banks 48
Memory Channels 8

(c) SpArch

Configuration Value
Merge Tree Size 6 layers, 64 inputs
Merge Tree FIFO Size 256 Bytes
Array Merger Size 16 × 16
Lookahead FIFO Size 32KB
Prefetch Buffer Size 0.5MB
Memory Channels 16

as the hardware utilization and throughput of individual
components. These measurements are taken over three distinct
sets of data. The first set consists of thirty real-world sparse
matrices sourced from SuiteSparse [42], as summarized in
Table II. These data points are meant to measure the average
real-world performance of the targeted accelerators with and
without each optimization.

The synthetic workloads consist of two datasets, detailed
in Table III. The first dataset measures how each optimization
interacts with input sparsity, consisting of 7 synthetic matrices
with a fixed dimensionality of 10,000 × 10,000 and varying
densities from 1% down to 0.001%. The second dataset explores
the effect of matrix size, maintaining a constant sparsity of
0.1% while varying dimensions from 50 × 50 up to 50,000
× 50,000. In both datasets, each matrix is expected to be
evaluated individually to show distinct data points rather
than aggregates.
Given that this study relies heavily on self-comparison,

most of the data is normalized. We dive deeper into our
implementations in the next subsection, but as a general rule
we report performance metrics of implementations without
our targeted optimization normalized to the performance
metrics of its fully optimized implementation. Each data point
is reported as a ratio, e.g., "Runtime for Merge optimizations
normalized to baseline".

B. Simulation

For our experiments, we developed a set of three custom
cycle-accurate C++ simulators – one for each accelerator –
rather than relying on released simulators or off-the-shelf
tools. This decision stems from two key considerations: (1) the
need to precisely control and exclude specific optimizations for
our self-comparison methodology, and (2) the lack of publicly
available simulators that could match our requirements for
accuracy, fidelity, and flexibility. By implementing these
simulators ourselves, we ensure that the results are directly
comparable, as each implementation operates under the same
controlled environment and modeling assumptions. Each
simulator has five versions: a baseline implementation, which
replicates the original accelerator design, and four alternative
implementations, each omitting one of the optimizations
specified in Table I.

The simulators are configured to match the configurations
stated to be optimal in the corresponding prior works. This
includes aspects such as PE size, cache size, and bandwidth
limitations, detailed in Table IV. We omit full architectural

details for brevity, but have included relevant hardware
configuration information in each case study.
Each accelerator is simulated as a series of components,

each taking input through a register, performing an operation
each cycle, and saving output to another register. The simu-
lators operate at a modeled clock frequency of 1 GHz, with
one-cycle delays enforced between components to account
for the time needed to access values placed in input registers.

While it is reasonable to develop a cycle-accurate simulator
for straightforward on-chip components and interactions,
the high levels of complexity involved in modern DRAM
systems, especially in implementations such as HBM, were
unreasonable and unnecessary to simulate ourselves. We
use the Ramulator 2.0 [43] DRAM simulator to accurately
measure memory access timing, motivated by its flexibility
and extensibility for modeling diverse DRAM configurations.
A wrapper was built around the DRAM timer, capable of
receiving and forwarding requests from the simulators to
Ramulator, and informing the simulators when memory
requests are fulfilled.
Our primary memory configuration consists of 8 HBM

memory channels, each with 128-bit buses. For SpArch, which
uses 16 64-bit buses, we adjust Ramulator’s configuration to
align with its setup. Each memory channel is divided into
2 pseudo-channels – except for SpArch [6], which uses 1
pseudo-channel per channel – and has a burst length of 4,
resulting in 32 bytes of data being returned per memory access
[44]. Ramulator operates at a clock speed of 1 GHz with a
data rate of 2 GT/s, providing a theoretical peak bandwidth
of 256 GB/s across all memory channels [43]. Note that the
above will not be changed in any of our experiments.

C. Validation

To ensure the simulators are reliable, we validated them
thoroughly at both the component and system levels. Each
simulator component was tested individually to confirm cycle-
accurate behavior. Initially, we defined a set of specifications
for each component, using descriptions from the prior work
whenever possible and external references [45]–[47] when
details were missing. These specifications primarily outlined
the resources a specific action would take (runtime, memory,
space, etc.), and we built and tested each component to align
with them. For standard hardware components such as caches,
FIFOs, and control logic, we followed established standards
to guarantee accuracy. Without direct access to simulators
or hardware descriptions from the prior work, this approach

4

654321

321

54

6

CSR

Cycle 3Cycle 2Cycle 1

6321PE1

554PE2

Channel 1 Bandwidth Limit

= Channel 1

= Channel 2

635421

321

54

6

Stored in Memory

C2SR

Cycle 2Cycle 1

6321PE1

54PE2

PE1

PE2

PE1

PE1

PE2

PE1

Stored in Memory

= Wasted

= Unused

Fig. 3: Example demonstrating how C2SR prevents wasted
memory cycles through channel interleaving.

represents the best available method to ensure fine-grained
correctness.

In addition to individual component testing, we performed
extensive end-to-end validation to confirm overall system
correctness. These tests involved simulations using dense and
sparse input matrices up to 20, 000×20, 000 in size. To verify
simulator accuracy, we compared results computed by the
simulators directly against trusted calculations from NumPy,
a reliable numerical computing library. These comparisons
confirmed that the simulators produce correct results and
perform accurately even when under stress.

V. Case Studies
In our case studies, we first introduce each case study

optimization and give some context as well as an overview of
its purpose. We then introduce what results the prior work
showed about the optimization, and where there is room to
further investigate the optimization. Finally, we report results
from the simulators and describe what benefits our evaluation
brings to researchers.

We have included a high-level overview of the accelerator
structure in each of the Case Studies. Unless change is
required for testing a specific optimization, each of the
experiments implement the same hardware configurations
located in Table IV.

A. Case Study 1: C2SR Compression

C2SR is an Access optimization introduced in MatRaptor
[7]. C2SR is used to overcome memory bandwidth limitations
of traditional formats such as Compressed Sparse Row (CSR).
Since consecutive values needed by Processing Elements (PEs)
are not always stored contiguously within the same memory
channel; thus, CSR causes ineffective bursts, channel conflicts,
and wasted bandwidth, especially when accessing the last
values of a row. As visualized in Figure 3, the C2SR format
interleaves values in memory such that each Sparse Matrix
A Loader (SpAL) can access all required values from a single
dedicated memory channel, eliminating channel conflicts

entirely. Furthermore, C2SR arranges data to ensure all fetched
memory bursts are fully utilized – even at row boundaries – by
placing the next needed values immediately after the current
row ends. This design ensures that every burst fetched from
memory is entirely effectual, maximizing memory bandwidth
utilization and improving overall throughput. MatRaptor’s
high-level structure is composed of a set of PEs. Each PE is
accompanied by an SpAL and Sparse Matrix B Loader (SpBL),
which loads required values from memory and stage them
for the PE through a series of FIFOs.

1) Room For Further Investigation: The prior work’s analysis
of MatRaptor’s C2SR format has several critical limitations.
First, the original evaluation measured bandwidth improve-
ments only under idealized conditions, neglecting memory
interference between different components accessing memory
simultaneously that could reduce the practical benefits of
C2SR. Second, prior work did not consider how using C2SR
impacts the efficiency of writing outputs back to memory,
which could constrain the accelerator’s overall throughput as
writing output back to memory becomes a bottleneck. Third,
their experiments did not explore how the improvements in
memory bandwidth utilization translate into runtime or per-
formance improvements during accelerator operation. Lastly,
the baseline CSR implementation was overly conservative,
restricting memory accesses to 8-byte chunks to prevent
crossing cache-line boundaries unnecessarily, potentially over-
stating the advantages attributed to C2SR. Consequently, the
actual impact of irregular memory accesses, cross-component
interference, and realistic operational scenarios on accelerator
performance remains unclear.
2) Experimental Results: An important shortcoming in

the prior evaluation was their uneven treatment of CSR
and C2SR formats, which led to bandwidth comparisons
under unrealistic conditions. To address this, we establish an
experimental setup ensuring both CSR and C2SR formats have
equal access to memory bandwidth, enabling a fair comparison
where each can fully utilize available resources. Specifically,
we implement two key changes. First, we configure Ramulator
such that both CSR and C2SR have equal bandwidth access.
For our base (C2SR) implementation, we split memory across
multiple independent channels, assigning each PE to a
dedicated channel. In the CSR implementation, we instead
connect the PEs to all memory channels. This adds minimal
overhead, since the base accelerator structure already includes
a crossbar for the SpBLs to access all memory channels.
Second, we ensure that all memory accesses in C2SR are
entirely effectual, meaning each 32-byte burst from memory
exclusively contains useful data. This adjustment contrasts
with CSR, where memory accesses often include unused bytes
due to alignment issues. By establishing these conditions, our
analysis directly investigates how improvements in memory
bandwidth utilization impact the actual performance of the
accelerator, addressing previously overlooked interactions and
providing a more realistic comparison between formats.
As shown in Figure 4, the experimental results indicate

that CSR unexpectedly outperforms C2SR on runtime at

5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

2

4

6

8

10

12

14

16

18

20

0.001 0.005 0.01 0.05 0.1 0.5 1

C
SR

 N
or

m
al

iz
ed

 M
et

ric
s

%
 w

as
te

d
m

em
or

y
ac

ce
ss

es
 C

SR

Input Density (%)

CSR Wasted Memory (%)
Runtime
Memory Accesses

Fig. 4: The percentage of wasted memory accesses for CSR
along with CSR’s performance metrics normalized to the
baseline (C2SR) over input density

mid-range sparsity levels (between 0.001 and 0.005). This
observation is explained primarily by two interacting fac-
tors. First, at these sparsity levels, the incremental memory
savings achieved by C2SR—reducing a few memory accesses
between rows—become negligible relative to the total size
of each row, diminishing its impact. This can be seen in
the bars in Figure 4 showing the diminishing percentage of
memory traffic that is wasted. Second, and more significantly,
MatRaptor’s implementation of C2SR constrains each PE to
a single memory channel during writing. This restriction
severely limits the write-back throughput, causing substantial
PE idle cycles as the system waits for completed outputs to
be written to memory before beginning new computations.
The CSR implementation, by contrast, can exploit higher
memory bandwidth due to its access to multiple channels
simultaneously, reducing these memory-induced stalls.

0.01

0.1

1

10

100

1000

PE
 W

as
te

d
C

yc
le

s
x

10
00

00

Density (%)

Fig. 5: C2SR: Number of PE cy-
cles wasted waiting for memory
writes over input density.

The increasing depen-
dence that MatRaptor with
C2SR has on write through-
put can be seen in Fig-
ure 5, where we see a
nearly exponential increase
in the number of cycles
wasted waiting for memory
writes up until we reach
1% density. Beyond approx-
imately 1% density, the ac-
celerator’s runtime transi-
tions from memory-bound

to computation-bound, as PE merge operations become the
dominant factor limiting overall throughput rather than
memory latency. This change is reflected in Figure 4, with
the CSR and C2SR runtime becoming equal.

This interaction – between a memory layout optimization
(C2SR) and architectural constraints imposed by the opti-
mization (limited memory channels per PE) – reveals how
optimizations can yield unintended bottlenecks when evalu-
ated under realistic conditions. Our results clearly highlight
the importance of thoroughly exploring interactions between
memory optimizations and architectural components, as

overlooking them can result in misleading conclusions about
an optimization’s true effectiveness. Future analyses of sparse
accelerators should similarly prioritize understanding and
explicitly modeling these interactions, ensuring conclusions
reflect realistic operating scenarios.

B. Case Study 2: Dynamic Row Scheduler

As an Orchestrate optimization, Gamma’s Dynamic Row
Scheduler [5] addresses the challenges of parallelizing work
between PEs and maximizing cache efficiency. Gamma’s
architecture consists of a set of asynchronous PEs connected
to a shared cache – the FiberCache – which serves a dual
role: (1) storing input matrix data and (2) temporarily holding
partial outputs for quick reuse by the PEs
Gamma processes matrices in CSR format, computing

results using a row-wise product approach. When input
rows exceed the processing limit of a PE, they are tiled into
smaller chunks and computed into partial sums. Partial sums
are temporarily stored in the FiberCache until all tiles are
processed, after which they are merged into a final output by
a PE. The Dynamic Row Scheduler iterates over the rows of
matrix A, scheduling computations dynamically to optimally
balance load across PEs and minimizing the time that partial
outputs stay in cache. By doing so, it improves cache efficiency,
freeing space for input data and reducing memory accesses.
In contrast, a Static Scheduler would assign each PE

to a fixed row before computation begins, ignoring tile
constraints. This often results in partial outputs lingering
in cache longer, limiting space for new input data and
increasing the risk of cache spills. While the end result of
the Dynamic Scheduler is a reduction in memory accesses,
its primary function is reordering computation rather than
directly optimizing memory access patterns – making it an
Orchestrate optimization instead of an Access optimization.
1) Room For Further Investigation: Gamma provides some

performance breakdowns for its components, but its evalua-
tion of dynamic scheduling is limited. Prior work compares
the fully dynamic scheduler (where all jobs are mapped to all
PEs) to a variant that maps each output row to a single PE.
While this is a reasonable comparison, it does not directly
test whether dynamic scheduling itself improves performance.
A more informative experiment would compare the dynamic
scheduler against a static scheduler that pre-assigns rows to
PEs before computation begins.
Additionally, Gamma’s evaluation is limited to a single

sparse matrix and only reports memory traffic composition
between the cache and DRAM, concluding that the dynamic
scheduler reduces the need to save and load partial matrices
from memory. To fully assess this optimization’s impact,
we extend the evaluation to multiple input matrices and
analyze additional performance metrics, including runtime,
cache composition, and memory accesses.

2) Experimental Results: Figure 6 shows that the Dynamic
Row Scheduler improves performance as matrices become
denser, an unexpected outcome for an optimization designed
for sparse workloads. This effect arises because the scheduler

6

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

0.001 0.005 0.01 0.05 0.1 0.5 1

N
or

m
al

iz
ed

 S
ta

tic
 M

et
ric

s

Density (%)

Memory Accesses Runtime Cache Misses

Fig. 6: The static scheduler normalized to the baseline
(dynamic) in terms of memory accesses, runtime, and cache
misses, over input density.

reduces the number of partial matrices stored in the cache, a
benefit that becomes more critical as density increases.
In extremely sparse matrices, each PE can often compute

an entire output row in a single processing round, eliminating
the need to store partial results. However, as matrix density
increases, partial sums accumulate and evict rows of the input
matrices, making cache management essential for sustaining
performance. The Dynamic Scheduler mitigates this issue by
parallelizing tiled row computation, ensuring partial outputs
remain in cache only as long as necessary before being used
and evicted.
By contrast, a static scheduler in its place inefficiently

assigns each PE to a single row, often causing partial outputs
to persist in cache longer than necessary, limiting available
space for input data, and increasing cache pressure. This
scheduling inefficiency leads to more frequent memory stalls
and reduced performance.
The effectiveness of this optimization depends on the

structure of the input matrix, particularly the row nonzero
count. Matrices with many nonzeros concentrated in a few
rows tend to generate more partial outputs, leading to greater
cache pressure. This effect is particularly pronounced in non-
square sparse matrices with long rows or matrices with a
highly uneven distribution of nonzeros.
Figure 7 further supports this conclusion by comparing

cache composition across all SuiteSparse inputs. On average,
the dynamic scheduler only slightly reduces the fraction
of cache occupied by partial outputs. However, when an-
alyzing only matrices with at least one row exceeding 64
nonzeros—where partial sums become significant—the effect

84
86
88
90
92
94
96
98

100

Unoptimized Optimized Unoptimized
Using Partial

Base Using
Partial

C
ac

he
 C

om
po

si
tio

n
(%

)

Total Partial Fiber Space In Cache Total B Fiber Space In Cache

Fig. 7: Gamma Cache Composition with and without Sched-
uler: Comparison over All SuiteSparse Matrices [42] and
Matrices Using Partial Outputs ("Using Partial")

is much stronger: in the unoptimized case, nearly 10% of the
cache is occupied by partial outputs, whereas the dynamic
scheduler cuts this amount in half, to 5%. While this may
seem like a small difference, in large workloads, this translates
to thousands (or even hundreds of thousands) of output rows
avoiding unnecessary evictions, since partial outputs generally
have a low lifespan inside the FiberCache.

These findings reinforce the value of the dynamic scheduler
while highlighting an important takeaway: optimization
effectiveness is often tied to specific workload characteristics.
While certain optimizations impact compute at all stages,
this case study shows an optimization that only comes
into play when partial sums are required in computation.
This distinction is crucial for researchers applying similar
optimizations, as it underscores the need to analyze workload-
specific constraints, which could lead to optimizations being
underutilized.

C. Case Study 3: Array-Based Merger

The Array-Based Merger, introduced in SpArch [6], is a
Merge optimization that improves throughput by merging
multiple values in a cycle instead of a single value. SpArch,
which relies on the outer product method, heavily depends
on merging partial matrices when computing output. These
partial matrices are represented as streams of (value, row,
column) tuples in memory, and in order to ensure that inputs
are merged in the correct order, they are sorted by their
row and then column index. Normally, merging these partial
matrices would proceed one value at a time, with the merge
component comparing the first value(s) of each input stream
to send one or the other, or adding them if they have the
same coordinates. The Array-Based Merger instead uses a
comparator array – a grid of comparator circuits – to merge
multiple values in a single cycle, directly improving the
throughput of this operation. For example, a 16 × 16 Array-
Based Merger would look at the first 16 values from both
input streams, and output 16 merged values in a single cycle.
Within SpArch, these mergers are placed into a merge tree,
with one merger operating at each level to merge values and
place them into the FIFOs of the layers above them.

SpArch’s dataflow starts with the Matrix A Fetcher, which
loads columns of matrix A from memory in a condensed
CSR format. These fetched elements enter the Lookahead
FIFO, which temporarily stores upcoming elements from the
A matrix to predict future access patterns. Using column
indices stored in this Lookahead FIFO, the B Matrix Prefetcher
anticipates and preloads necessary rows from matrix B into an
on-chip buffer, employing a near-optimal replacement strategy
based on this information. Critically to our results, fetching
and multiplication are not done in parallel with merging. This
means that the accelerator is either fetching and multiplying
values to stage them for the merge tree, or merging those
values, never doing both simultaneously.

Fetched data from the A matrix and B matrix stream into
a multiplier array, which performs parallel multiplications
to generate partial matrices. These partial matrices flow

7

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Sp
Ar

ch
un

op
tim

iz
ed

 ru
nt

im
e

no
rm

al
iz

ed

to
 o

pt
im

iz
ed

 ru
nt

im
e

as
 a

 ra
tio

Matrix Dimension

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Density (%)

(a) (b)

Fig. 8: SpArch’s Array-Based Merger on the runtime when
(a) size and (b) sparsity vary.

directly into the Merge Tree, a specialized hardware structure
composed of Array-Based Mergers and FIFOs arranged hier-
archically, merging multiple sorted partial matrices efficiently.
1) Room for Further Investigation: SpArch does take steps

to report the performance of the Array-Based Merger, but
there are still a few pieces missing. The work reported the
GFLOPS and number of DRAM accesses achieved by varying
the comparator array’s size. This means we get a good idea of
the average runtime improvement of the accelerator between
1×1 and 16×16 multipliers (since the amount of computation
is the same), but these values are a combined result of the
accelerator evaluated across over 20 datasets specified in
another work [26]. Insights into the optimization’s overall
effectiveness across varying levels of sparsity and matrix sizes,
as well as potential bottlenecks within the merge tree caused
by differences in input types, remain largely unexplored.

2
4
6
8

10
12
14
16
18

N
or

m
al

iz
ed

 M
er

ge
 C

yc
le

s

Density (%)

Fig. 9: Ratio of number of cycles
spent merging between unopti-
mzed merger and Array-Based
Merger over input density.

2) Experimental Results:

Our analysis of SpArch’s
Array-Based Merger evalu-
ates the efficiency of merge
operations and how it in-
teracts with varying input
densities. Figure 8 shows
how the optimization af-
fects runtime across ma-
trices of different sizes
and sparsities. Generally,
denser and larger matri-
ces involve more merge
operations, offering greater
opportunities for efficiency
improvements using the optimized merger.
This relationship becomes clearer when we look at the

normalized number of merge cycles in Figure 9. As input
density increases (or sparsity decreases), the optimized merger
approaches – but does not quite reach – a 16× improvement
in merge cycles compared to the unoptimized version. This
limit makes intuitive sense because the Array-Based Merger
merges 16 values at once, naturally setting an upper bound
on improvement. At higher densities, the merger can achieve
significant efficiency gains, despite some overhead from stalls
and the merge tree structure itself. Notably, the runtime

improvements do not scale with the efficiency of the optimiza-
tion over the baseline, drawing a far more gradual curve of
performance improvement. Additionally, at 1% density, there
is a noticeable mismatch between the two graphs – runtime
improvements slow down even though the improvements to
the number of merge cycles remain consistent. Both of these
indicate that the performance improvement or degradation
that we see as we vary density and size are not a function
of the optimization’s effectiveness.
As density increases, the improvements brought by the

optimized merger to total runtime initially grows but sub-
sequently decreases, as shown in Figure 8. Despite the
merger’s capability to consistently achieve near-maximum
efficiency, its visible benefits become constrained by other
runtime factors, such as data movement or other on-chip
computations. Because SpArch does not perform merging in
parallel with other operations, merging competes directly with
memory fetching and multiplication tasks for runtime. In low-
density situations, these tasks occupy significant runtime in
comparison with merging, which remains a simple operation.
Gradually, as density and size increase, merging becomes more
complex anjd takes up a larger amount of the total runtime
of the accelerator. After 1% density, partial outputs being
saved to and loaded from DRAM take up a large portion of
runtime, reducing the amount of runtime spent merging and
limiting the performance improvements that the Array-Based
Merger brings. Simply, the more the accelerator performs
tasks outside of merging, the smaller the overall impact of
the merge optimization on runtime, causing the performance
metrics to converge. Though this pattern of the optimization’s
effectiveness being reliant on input may seem similar to the
Dynamic Row Scheduler introduced in the previous case study,
they are not the same. The Array-Based Merger does not
perform better or worse on the input. The performance trends
we see, paradoxically, are dictated solely by the performance of
the accelerator on all computations excluding merging, since
the portion of runtime allocated to merging is determined by
them.
Our findings show that relying solely on overall runtime

metrics can conceal important performance details and lead to
misleading conclusions about an optimization’s effectiveness.
By examining how merging efficiency changes with varying
input densities, we pinpoint critical moments when other parts
of the system limit direct benefits from optimization. Thus,
accurately evaluating hardware optimizations requires looking
at both specific performance metrics and how these metrics
came to be in the context of the overall system, allowing for
better decisions when designing or choosing optimizations
for practical use.

VI. Analysis of Optimization Categories
In this section, we go over the optimization categories,

and their effectiveness as a whole, to see if we can find
broad patterns in how each category interacts with varying
inputs. We first evaluate each optimization category with
respect to input sparsity and size, investigate a pattern and

8

tradeoff we see across our evaluations, and then dive into
their performance on the real-world sparse matrices.

A. Sparsity & Size Evaluations

One of the primary purposes of SpGEMM accelerators is to
scale well with large and sparse matrices. Our optimizations
aim to further this goal, but due to the differences in scope
between each optimization category, we expect each category
to respond differently to varying inputs. Figure 10 summarizes
our findings at a high level, presenting the median runtime
and memory access improvements across the three categories
for synthetic matrices with varying sparsity and size.
As shown in Figure 10 (a) and (c), Merge optimizations

perform best on large and dense inputs, with Access optimiza-
tions being more effective on smaller and sparser matrices and
Orchestrate optimizations shadowing Merge optimizations
to a lesser extent. An important secondary observation is
the sharp increase in performance improvements by Merge
optimizations, rather than a smooth linear rise like we see in
Case Study 3. If the number of operations alone determined
this behavior, we would expect a gradual increase. Instead,
the sharp jump followed by stabilization reflects the role
of operational intensity – the number of operations per
byte fetched from memory. This relationship will be further
explored in the following section
Access optimizations behave mostly as expected, outper-

forming other categories in terms of memory access reduction,
as shown in Figure 10 (b) and (d). The "hump" pattern stems
from a lack of opportunity to optimize the smaller and sparser
inputs, followed by solid improvements on middling inputs,
and then a degradation of performance as the primary form
of memory movement becomes partial outputs to and from
memory, which are far larger and do not have as much room
to be optimized by Access optimizations since they are single-
use and unique.
Finally, as seen in Figure 10, the impact of Orchestrate

optimizations increases with input complexity, shadowing
Merge optimizations for larger, denser matrices, while main-
taining some improvements across smaller, sparser inputs.
This category enhances operational efficiency by improving
data locality and synchronization between components, which
can both reduce idle times and improve throughput. Unlike
Access or Merge optimizations, which are more directly tied to
memory bandwidth or peak performance limits, Orchestrate
optimizations adjust how inputs are distributed and processed
within the accelerator, allowing the system to adapt more
effectively to all inputs. That is, Orchestrate optimizations
improve performance regardless of whether the accelerator
is compute or memory bound, and can impact either one
depending on the optimization.

B. Benefits and Tradeoffs of Optimization Categories

A critical insight from our results, supported by our case
studies, is the significant but context-dependent performance
impact of Merge optimizations across accelerators, as shown in
Figure 10. Merge optimizations, such as SpArch’s Array-Based

0.9

0.95

1

1.05

1.1

1.15

1.2

N
or

m
al

iz
ed

 A
cc

es
se

s

Input Size

0

0.5

1

1.5

2

2.5

3

Ru
nt

im
e

Im
pr

ov
em

en
t

Input Size

0

0.5

1

1.5

2

2.5

3

3.5

Ru
nt

im
e

Im
pr

ov
em

en
t

Input Density (%)

Access
Orchestrate
Merge

0.9

0.95

1

1.05

1.1

1.15

1.2

N
or

m
al

iz
ed

 A
cc

es
se

s

Input Density (%)

(c)

(a) (b)

(d)

Fig. 10: Median Access, Orchestrate, and Merge unoptimized
runtime and memory accesses normalized to baseline when
density and size vary.

Merger, often provide straightforward, large performance
improvements by enhancing merging efficiency and reducing
computation cycles per operation. These optimizations directly
increase achievable GFLOPS, leading to notable runtime gains
for larger and denser inputs, particularly in compute-bound
scenarios where internal computation dominates runtime.
However, despite their theoretical impact, the improvements
to Merge optimizations can fail to translate fully into overall
accelerator performance improvements. This limitation arises
because accelerators frequently remain memory-bound, rather
than compute-bound in computation, with on-chip computa-
tion taking up a smaller portion of runtime compared to the
challenges of memory movement. Consequently, while Merge
optimizations significantly improve on-chip computations,
their broader impact is limited unless compute dominates
runtime, as observed in Case Study 3.

Access optimizations exhibit a complementary but distinct
performance profile, generally offering moderate and consis-
tent improvements by reducing off-chip memory traffic. These
optimizations prove effective across a wide range of sparse
inputs common to these accelerators. Additionally, they tend
to greatly improve memory reuse and memory bandwidth
utilization, even if they do not have an outstanding impact
on runtime. Mirroring Merge optimizations, their impact on
runtime diminishes sharply when accelerators become heavily
compute-bound, as improvements to memory efficiency no
longer meaningfully affect overall performance. A particular
limitation of Access optimizations arises in scenarios involving
partial outputs, which often dominate memory traffic. These
partial outputs, characterized by limited reuse and challenging
on-chip storage requirements, prove difficult for Access

9

optimizations to effectively address, thereby constraining their
usefulness in such contexts.
Orchestrate optimizations tend to function primarily as

facilitators, providing modest yet stable improvements that
enhance overall accelerator efficiency rather than signifi-
cantly altering computational or memory performance. As
exemplified by the Dynamic Row Scheduler, these optimiza-
tions focus on compensating in scenarios where Merge and
Access optimizations fall short, such as managing partial
output movement efficiently and efficiently parallelizing work.
Though Orchestrate optimizations exhibit robustness across
both memory- and compute-bound regimes, their impact
remains comparatively limited. They do not define accelerator
performance; instead, they serve as supportive optimizations
that complement the strengths and mitigate the weaknesses
of Merge and Access optimizations.

Our results emphasize the necessity of balanced integration
across optimization categories: Merge optimizations targeting
peak computational efficiency; Access optimizations reducing
memory bandwidth demands; and Orchestrate optimizations
dynamically allocating internal resources to sustain perfor-
mance across diverse workloads. Each optimization category
inherently carries specific trade-offs: Merge optimizations risk
diminishing returns as computational limits are approached;
Access optimizations become irrelevant when accelerators are
strongly compute-bound or dominated by partial outputs; and
Orchestrate optimizations consistently deliver lower-impact
improvements, facilitating rather than defining performance.
Formally, we redefine these optimization categories ac-

cordingly: Merge optimizations as enhancements targeting
internal computational efficiency in compute-bound scenarios;
Access optimizations as methods improving memory effi-
ciency primarily in memory-bound contexts; and Orchestrate
optimizations as dynamic facilitators, optimizing resource
allocation and data movement across varying operational
intensities.

Future work should explore adaptive optimization strategies
that dynamically combine these categories based on real-
time workload profiling. Developing predictive techniques
to anticipate bottleneck transitions could allow proactive
optimization, mitigating the limitations inherent in any single
optimization type. Investigating novel methods explicitly
addressing the interaction between computational throughput
and memory efficiency could further enhance accelerator per-
formance, particularly in overcoming observed performance
plateaus. Ultimately, accelerators capable of dynamically
shifting optimization strategies based on real-time workload
characteristics can effectively maximize performance across
diverse, realistic scenarios.

C. Evaluation on SuiteSparse datasets

Figures 11 (a) and (b) show which of the optimization
categories has the best median performance over each of the
SuiteSparse matrices, categorized by size and type, respectively.
In this plot, the matrices that these accelerators are most
likely to encounter tend to the bottom right of the scatterplot.

0.0001

0.001

0.01

0.1

1

10

100

100 1000 10000 100000 1000000

D
en

si
ty

 (%
)

Size

Access Orchestrate Merge (a)

0.0001

0.001

0.01

0.1

1

10

100

100 1000 10000 100000 1000000

D
en

si
ty

 (%
)

Size

Access Merge Equal (b)

Fig. 11: SuiteSparse matrices, plotted by their density and size,
and colored based on which optimization category has the
(a) highest median runtime improvement and (b) the highest
median memory access improvement

These graphs mostly confirm our expectations, with Merge
optimizations dominating runtime across the board, and
Access optimizations holding the advantage in memory
accesses. The lack of observable patterns in the memory
access findings indicate that matrix shape likely skews the
results, but an analysis of how matrix shape interacts with
Access optimizations is deeply optimization-specific and is
outside the scope of this paper.

Despite this, these findings reaffirm our previous findings
about the optimization categories. Keeping in mind that our
SuiteSparse matrices tend towards being small and dense
or large and sparse, Merge optimizations are clearly critical
for these types of matrices that strain compute resources,
while Access optimizations lean more towards improving
resource efficiency. Orchestrate optimizations are rarely the
best performing optimization category, but tend towards
consistency across workloads with our case study optimization
(Section V-B) being an exception rather than the norm.
Together, these optimizations form a robust framework for
scaling SpGEMM accelerators across diverse applications, from
synthetic benchmarks to complex real-world data. Future work
could expand on these findings by exploring interactions
between matrix shape, dataflow orchestration, sensitivity to
operational intensity and optimization efficacy.

VII. Conclusions
SpGEMM accelerators have potential to play a pivotal role

in various application domains, yet their evaluation often
overlooks the nuanced contributions of individual optimiza-
tions. This paper introduces a self-comparison methodology,
enabling the isolation and analysis of these contributions.
Through our experiments, we have demonstrated how differ-

10

ent optimization categories – Access, Merge, and Orchestrate
– perform under varying input sparsity and size, as well as
in real-world conditions. Our results highlight critical trends:
the dominance of Access optimizations for sparse or small
inputs, the rising significance of Merge optimizations as inputs
become denser, and the unique adaptability of Orchestrate
optimizations.
These findings underline the importance of a holistic

evaluation approach that accounts for the interplay between
optimizations and input characteristics. Notably, our work
reveals how certain optimizations can show immense value
when their strengths are played to, as well as have little value
at their weakest, reinforcing the necessity of comprehensive
evaluation frameworks.
By dissecting and evaluating optimizations within sparse

accelerators, this paper investigates the strengths and weak-
nesses of these optimizations and categories, offering a
set of useful insights for future researchers. Our research
not only deepens understanding of SpGEMM accelerator
performance but also establishes a framework for developing
adaptive and efficient accelerators. As SpGEMM accelerators
increasingly address critical computational workloads, the
findings presented here provide a foundation for further
innovation and more targeted optimization strategies tailored
to the ever-expanding diversity of real-world data.

Beyond static designs, the findings from La Superba extend
to dynamically reconfigurable systems (DRS), which face
added complexity from adapting to diverse workloads in
real-time. DRS demands modular and flexible optimization
strategies capable of responding to varying input characteris-
tics and computational requirements. By providing detailed
insights into how individual optimizations and categories
perform across a wide spectrum of conditions, La Superba
lays the groundwork for creating hardware systems that
dynamically reconfigure at an optimization level. This opens
up exciting opportunities for future research, leveraging the
modularity and adaptability of sparse accelerators to address
the challenges posed by dynamic workloads.
In conclusion, as SpGEMM accelerators tackle critical

computational tasks, this paper’s methodologies provide a
foundation for innovation in static and reconfigurable designs,
advancing efficient, workload-aware hardware tailored to real-
world needs.

Acknowledgments

This paper is a part of the work supported by the U.S.
Department of Energy (DoE), Office of Science, Office of
Advanced Scientific Computing Research (ACSR) the Early
Career Research Program (ECRP), under Award Number DE-
SC0024079.

References

[1] N. Bell, S. Dalton, and L. N. Olson, “Exposing fine-grained
parallelism in algebraic multigrid methods,” SIAM Journal on Scientific

Computing, vol. 34, no. 4, pp. C123–C152, 2012. [Online]. Available:
https://doi.org/10.1137/110838844

[2] G. Ballard, C. M. Siefert, and J. J. Hu, “Reducing communication
costs for sparse matrix multiplication within algebraic multigrid,”
SIAM J. Sci. Comput., vol. 38, 2015. [Online]. Available:
https://api.semanticscholar.org/CorpusID:18274179

[3] J. S. Mueller-Roemer, C. Altenhofen, and A. Stork, “Ternary sparse
matrix representation for volumetric mesh subdivision and processing
on gpus,” Comput. Graph. Forum, vol. 36, no. 5, p. 59–69, Aug. 2017.
[Online]. Available: https://doi.org/10.1111/cgf.13245

[4] N. Bock, M. Challacombe, and L. V. Kalé, “Solvers for O(n) electronic
structure in the strong scaling limit,” 2015. [Online]. Available:
https://arxiv.org/abs/1403.7458

[5] G. Zhang, N. Attaluri, J. S. Emer, and D. Sanchez, “Gamma: Leveraging
gustavson’s algorithm to accelerate sparse matrix multiplication,” in
Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, 2021, pp.
687–701.

[6] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “Sparch: Efficient
architecture for sparse matrix multiplication,” in 2020 IEEE International

Symposium on High Performance Computer Architecture (HPCA). IEEE,
2020, pp. 261–274.

[7] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “Matraptor:
A sparse-sparse matrix multiplication accelerator based on row-wise
product,” in 2020 53rd Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO). IEEE, 2020, pp. 766–780.
[8] X. He, S. Pal, A. Amarnath, S. Feng, D.-H. Park, A. Rovinski, H. Ye,

Y. Chen, R. Dreslinski, and T. Mudge, “Sparse-tpu: Adapting systolic
arrays for sparse matrices,” in Proceedings of the 34th ACM international

conference on supercomputing, 2020, pp. 1–12.
[9] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li, T. Chen,

and Y. Chen, “Cambricon-s: Addressing irregularity in sparse neural
networks through a cooperative software/hardware approach,” in 2018

51st Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO). IEEE, 2018, pp. 15–28.
[10] B. Wang, S. Ma, S. Luo, L. Wu, J. Zhang, C. Zhang, and T. Li, “Spargd:

A sparse gemm accelerator with dynamic dataflow,” ACM Transactions

on Design Automation of Electronic Systems, vol. 29, no. 2, pp. 1–32,
2024.

[11] Y. Tortorella, L. Bertaccini, L. Benini, D. Rossi, and F. Conti, “Redmule:
A mixed-precision matrix–matrix operation engine for flexible and
energy-efficient on-chip linear algebra and tinyml training acceleration,”
Future Generation Computer Systems, vol. 149, pp. 122–135, 2023.

[12] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, Efficient processing of deep

neural networks. Springer, 2020.
[13] S. Zeng, Y. Lin, S. Liang, J. Kang, D. Xie, Y. Shan, S. Han, Y. Wang,

and H. Yang, “A fine-grained sparse accelerator for multi-precision
dnn,” in Proceedings of the 2019 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays, ser. FPGA ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 185. [Online].
Available: https://doi.org/10.1145/3289602.3293964

[14] G. Li, W. Xu, Z. Song, N. Jing, J. Cheng, and X. Liang, “Ristretto:
An atomized processing architecture for sparsity-condensed stream
flow in cnn,” in 2022 55th IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2022, pp. 1434–1450.
[15] A. Azad, A. Buluç, and J. Gilbert, “Parallel triangle counting and

enumeration using matrix algebra,” in 2015 IEEE International Parallel

and Distributed Processing Symposium Workshop. IEEE, 2015, pp. 804–
811.

[16] J. R. Gilbert, S. Reinhardt, and V. B. Shah, “High-performance graph
algorithms from parallel sparse matrices,” in Proceedings of the 8th

International Conference on Applied Parallel Computing: State of the Art

in Scientific Computing, ser. PARA’06. Berlin, Heidelberg: Springer-
Verlag, 2006, p. 260–269.

[17] A. Buluç and J. R. Gilbert, “The combinatorial blas: design,
implementation, and applications,” Int. J. High Perform. Comput.

Appl., vol. 25, no. 4, p. 496–509, Nov. 2011. [Online]. Available:
https://doi.org/10.1177/1094342011403516

[18] S. R. Agrawal, C. M. Dee, and A. R. Lebeck, “Exploiting accelerators
for efficient high dimensional similarity search,” in Proceedings

of the 21st ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, ser. PPoPP ’16. New York, NY, USA:
Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2851141.2851144

[19] J. Kim, M. Jang, H. Nam, and S. Kim, “Harp: Hardware-based pseudo-
tiling for sparse matrix multiplication accelerator,” in Proceedings of the

11

56th Annual IEEE/ACM International Symposium on Microarchitecture,
2023, pp. 1148–1162.

[20] G. E. Moon, H. Kwon, G. Jeong, P. Chatarasi, S. Rajamanickam, and
T. Krishna, “Evaluating spatial accelerator architectures with tiled matrix-
matrix multiplication,” IEEE Transactions on Parallel and Distributed

Systems, vol. 33, no. 4, pp. 1002–1014, 2021.
[21] J. Gao, W. Ji, F. Chang, S. Han, B. Wei, Z. Liu, and Y. Wang, “A systematic

survey of general sparse matrix-matrix multiplication,” ACM Computing

Surveys, vol. 55, no. 12, pp. 1–36, 2023.
[22] J. Mellor-Crummey, D. Whalley, and K. Kennedy, “Improving memory

hierarchy performance for irregular applications,” in Proceedings of the

13th International Conference on Supercomputing, ser. ICS ’99. New
York, NY, USA: Association for Computing Machinery, 1999, p. 425–433.
[Online]. Available: https://doi.org/10.1145/305138.305228

[23] B. Asgari, R. Hadidi, J. Dierberger, C. Steinichen, A. Marfatia, and
H. Kim, “Copernicus: Characterizing the performance implications
of compression formats used in sparse workloads,” in 2021 IEEE

International Symposium on Workload Characterization (IISWC). IEEE,
2021, pp. 1–12.

[24] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul,
and T. Krishna, “Sigma: A sparse and irregular gemm accelerator
with flexible interconnects for dnn training,” in 2020 IEEE International

Symposium on High Performance Computer Architecture (HPCA). IEEE,
2020, pp. 58–70.

[25] F. Muñoz-Martínez, R. Garg, M. Pellauer, J. L. Abellán, M. E. Acacio,
and T. Krishna, “Flexagon: A multi-dataflow sparse-sparse matrix
multiplication accelerator for efficient dnn processing,” in Proceedings

of the 28th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, Volume 3, 2023, pp.
252–265.

[26] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti, H.-
S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “Outerspace: An outer
product based sparse matrix multiplication accelerator,” in 2018 IEEE

International Symposium on High Performance Computer Architecture

(HPCA). IEEE, 2018, pp. 724–736.
[27] Z. Li, J. Li, T. Chen, D. Niu, H. Zheng, Y. Xie, and M. Gao, “Spada:

accelerating sparse matrix multiplication with adaptive dataflow,” in
Proceedings of the 28th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, Volume 2,
2023, pp. 747–761.

[28] C. K. Vadlamudi and B. Asgari, “Electra: Eliminating the ineffectual com-
putations on bitmap compressed matrices,” IEEE Computer Architecture

Letters, 2024.
[29] A. Gerami and B. Asgari, “Gust: Graph edge-coloring utilization

for accelerating sparse matrix vector multiplication,” in International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2024.
[30] D. Ramchandani, B. Asgari, and H. Kim, “Spica: Exploring fpga opti-

mizations to enable an efficient spmv implementation for computations
at edge,” in 2023 IEEE International Conference on Edge Computing and

Communications (EDGE). IEEE, 2023, pp. 36–42.
[31] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,

E. Solomonik, J. Emer, and C. W. Fletcher, “Extensor: An accelerator
[37] H. Huang and E. Chow, “Exploring the design space of distributed

parallel sparse matrix-multiple vector multiplication,” IEEE Transactions

on Parallel and Distributed Systems, vol. 35, no. 11, pp. 1977–1988, 2024.

for sparse tensor algebra,” in Proceedings of the 52nd Annual IEEE/ACM

International Symposium on Microarchitecture, 2019, pp. 319–333.
[32] S. Dave, R. Baghdadi, T. Nowatzki, S. Avancha, A. Shrivastava, and B. Li,

“Hardware acceleration of sparse and irregular tensor computations of
ml models: A survey and insights,” Proceedings of the IEEE, vol. 109,
no. 10, pp. 1706–1752, 2021.

[33] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “Eie: Efficient inference engine on compressed deep neural
network,” 2016. [Online]. Available: https://arxiv.org/abs/1602.01528

[34] J. O. Tørring, J. C. Meyer, and A. C. Elster, “Autotuning benchmarking
techniques: A roofline model case study,” 2021. [Online]. Available:
https://arxiv.org/abs/2103.08716

[35] Y. N. Wu, P.-A. Tsai, A. Parashar, V. Sze, and J. S. Emer, “Sparseloop:
An analytical approach to sparse tensor accelerator modeling,” 2023.
[Online]. Available: https://arxiv.org/abs/2205.05826

[36] C. Y. Lin, Z. Zhang, N. Wong, and H. K.-H. So, “Design space exploration
for sparse matrix-matrix multiplication on fpgas,” in 2010 International

Conference on Field-Programmable Technology, 2010, pp. 369–372.
[38] U. Bakhtiar, H. Hosseini, and B. Asgari, “Acamar: A dynamically recon-

figurable scientific computing accelerator for robust convergence and
minimal resource underutilization,” in 2024 57th IEEE/ACM International

Symposium on Microarchitecture (MICRO). IEEE, 2024, pp. 1601–1616.
[39] V. STRASSEN, “Gaussian elimination is not optimal.” Numerische

Mathematik, vol. 13, pp. 354–356, 1969. [Online]. Available:
http://eudml.org/doc/131927

[40] S. Milaković, O. Selvitopi, I. Nisa, Z. Budimlić, and A. Buluc, “Parallel
algorithms for masked sparse matrix-matrix products,” in Proceedings

of the 51st International Conference on Parallel Processing, ser. ICPP
’22. New York, NY, USA: Association for Computing Machinery, 2023.
[Online]. Available: https://doi.org/10.1145/3545008.3545048

[41] F. G. Gustavson, “Two fast algorithms for sparse matrices:
Multiplication and permuted transposition,” ACM Trans. Math.

Softw., vol. 4, no. 3, p. 250–269, sep 1978. [Online]. Available:
https://doi.org/10.1145/355791.355796

[42] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011. [Online].
Available: https://doi.org/10.1145/2049662.2049663

[43] H. Luo, Y. C. Tuğrul, F. N. Bostancı, A. Olgun, A. G. Yağlıkçı, , and
O. Mutlu, “Ramulator 2.0: A Modern, Modular, and Extensible DRAM
Simulator,” 2023.

[44] K. Asifuzzaman, M. Abuelala, M. Hassan, and F. J. Cazorla, “Demys-
tifying the characteristics of high bandwidth memory for real-time
systems,” in 2021 IEEE/ACM International Conference On Computer Aided

Design (ICCAD), 2021, pp. 1–9.
[45] K. Macdonald, C. Nitta, M. Farrens, and V. Akella, “Pdg_gen: A

methodology for fast and accurate simulation of on-chip networks,”
IEEE Transactions on Computers, vol. 63, no. 3, pp. 650–663, 2012.

[46] CoffeeBeforeArch, “Writing a trace-based cache simulator,” 2020.
[Online]. Available: https://coffeebeforearch.github.io/2020/12/16/cache-
simulator.html

[47] Y.-C. Chen, T. Seidl, N. Hölscher, C. Hakert, M. D. Truong, J.-J. Chen,
J. P. C. de Lima, A. A. Khan, J. Castrillon, A. Nezhadi et al., “Modeling and
simulating emerging memory technologies: A tutorial,” arXiv preprint

arXiv:2502.10167, 2025.

12

