

DynaaDCP: Dynamic Navigation of Autonomous Agents for Distributed Capture Processing

Motivation

- Commercial UAV industry will reach 805,000 ≻ in sales in 2021, a CAGR of 51%[1]
- Increasing use cases of UAVs from surveying \triangleright land to emergency services and national security
- Communication between multiple UAV \geq agents is increasingly becoming a bottleneck [2]
- Optimizing communication directly affects \geq overall flight range and mission time
- Different physical form factors have different ≻ communication signatures

Predicted value of drones by industry

Intelligence, Business Insider. "Commercial Unmanned Aerial Vehicle (UAV) Market Analysis – Industry Trends, Forecasts and Companies." Business Insider, Business Insider, 10 Feb. 2020, www.businessinsider.com/commercial-uav-marketanalysis

Applications of UAV Technology

Click to copy

- Aerial photography ≻
- Agriculture
- Defense
- **Emergency services**
- Geographic mapping
- Personal hobby \geq
- Search and rescue \triangleright
- Shipping ≻

and many more...

UAS) capabilities. The LVSS ADA C-UAS is an enhanced addition to Teledyne FLIR's f. RELATED TOPICS LVSS platform that features reliable, rapidly deployable, cutting-edge technology to de Russia-Ukraine wa dle East

normally excel in low-tech conflicts, and Turkey has sold them to more than a dozen countries including Azerbaijan, Libva, Morocco and Ethiopia

The drones have carried out unexpectedly successful attacks in the early stages of Ukraine's conflict with Moscow before the Russians were able to set up their air defenses in the battlefield

General UAV Task Outline

- Capture images
 - Various image sensors
 - Buffer video feed
- Run computations on images
 - > 3D Reconstruction
 - Feature detection
 - Collision avoidance
- Communicate data and results
 - Distributed workload
 - > Different communication technologies
 - Communicate tasks time vary significantly
- Dependencies exist between the tasks

DroneEye (Photo: DSC IITP)

mmWave

- Millimeter Wave (mmWave) spectrum between 30 GHz and 300 GHz
 - V band (60 GHz) set aside by FCC to be unlicensed
- > High bandwidth
- Limited by short range
 - Due to oxygen absorption[6]
- > Bandwidth vs. Data Rate
 - > $C = B \log_2(1 + \frac{S}{N})$ [Shannon-Hartley Theorem]
 - Channel Capacity (C) is increased w/ higher bandwidth (B) keeping signal-to-noise ratio constant.

Georgia

comparch

Utilizing mmWave for UAVs

- > Two utility configurations
 - Star config
 - Cone config
- Two modes of operation
 - > Wi-Fi
 - > mmWave
- Wi-Fi for long range low throughput
- mmWave for short range high throughput
- Dynamically switch between the two modes on-the-fly
- But when should it switch? 😥

Georgia

comparch

6

Our Domain

Should we get the **drones closer** and use **high bandwidth communication** while incurring the **movement penalty**?

Or Should we keep the **drones at distance** and **use low bandwidth communication** while incurring the **bandwidth penalty**? Understanding these tradeoffs and their characteristics are critical to solve the correct set of problems

System Architecture & Design

- Envisioned Setting
- > Overview
- > Experiments

Envisioned Setting

- > Large scale forest fire
 - > Objective is to quickly 3D map areas with immediate threat to human life & property
 - > 3D Map to be used for SAR
 - > High signal attenuation, cannot use base station
 - > Area of interest is too large for a single UAV
 - Limited backhaul links
- > Can be extended to any situation where backhaul and cloud links are not feasible
 - > Ocean rescue, oil spill mapping, missions in mountain ranges etc.

Overview

- > Near-Far movements
 - Drones halt capture
 - Come near to exchange data
 - Go back to their original position
 - Resume capture
- Contents of captured data do not affect the trace of the distributed algorithm
- No timed events

Experiment Setup

- > Distributed CV Processing
 - Single node, Two/Four node Wi-Fi, Two/Four node mmWave
 - Compute model from Raspberry Pi 4 [7] and parameters configured
 - Parameters and knobs imported into VirtualBox[8] VMs
 - > OpenDroneMap[4]
 - > VMs configured for each run to simulate different mission characteristics
 - Network monitoring using Wireshark[5] and iperf3[3]

Sample input images captured from different angle by drones.

Output of the Orthophoto and YOLOv4 object detection.

Results

Distributed Computer Vision Processing on VMs: (a) Compute Benchmarks, (b) Communication Benchmarks.

Evaluation (1)

DynaaDCP reduces the total flight time required to complete the mission, can comes close to the hypothetical least time required (Oracle).

Evaluation (2)

Despite multiple near ↔ far transits (numbers on graphs), total energy consumption reduces due to shorter flight times.

Evaluation (3)

Time spent on each subtask (normalized to capture); mmWave's contribution to communication in DynaaDCP.

Key Contributions & Future Directions

- > The key contributions of our work as summarized
 - A novel approach to run distributed algorithms on autonomous agents where control of proximity improves efficiency.
 - A movement scheduling algorithm that incorporates goals of compute, communicate, and capture of data.
 - Example use-cases that demonstrate the proposed scheduling algorithm's benefits to various distributed application scenarios.

Future Directions

- > End-to-end System Implementation
- Variations in Compute Tasks
- Real-time Decision making
- Scalability analysis

Thank you

References

- > [1] https://www.businessinsider.com/commercial-uav-market-analysis
- [2] Wooseong Kim. 2019. Experimental demonstration of MmWave vehicle-to-vehicle communications using IEEE 802.11 ad. Sensors 19, 9 (2019), 2057
- > [3] iperf3. 2021. iperf. https://iperf.fr/. [Online; accessed 06/03/21]
- [4] OpenDroneMap. 2020. ODM. Retrieved Mar 1, 2021 <u>https://github.com/OpenDroneMap/ODM</u>
- > [5] Wireshark. <u>https://www.wireshark.org/</u>
- [6]International Telecommunication Union Radiocommunication Sector. 2016. Attenuation by atmospheric gases. (2016)
- > [7] Raspberry Pi 4. <u>https://www.raspberrypi.com/products/raspberry-pi-4-model-b/</u>
- > [8] VirtualBox. https://www.virtualbox.org/

